A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://en.cppreference.com/w/cpp/language/../memory/../language/reinterpret_cast.html below:

reinterpret_cast conversion - cppreference.com

Converts between types by reinterpreting the underlying bit pattern.

[edit] Syntax reinterpret_cast< target-type >( expression )

Returns a value of type target-type.

[edit] Explanation

Unlike static_cast, but like const_cast, the reinterpret_cast expression does not compile to any CPU instructions (except when converting between integers and pointers, or between pointers on obscure architectures where pointer representation depends on its type). It is primarily a compile-time directive which instructs the compiler to treat expression as if it had the type target-type.

Only the following conversions can be done with reinterpret_cast, except when such conversions would cast away constness (or volatility).

1) An expression of integral, enumeration, pointer, or pointer-to-member type can be converted to its own type. The resulting value is the same as the value of expression.

2)

A pointer can be converted to any integral type large enough to hold all values of its type (e.g. to

std::uintptr_t

).

3)

A value of any integral or enumeration type can be converted to a pointer type. A pointer converted to an integer of sufficient size and back to the same pointer type is guaranteed to have its original value, otherwise the resulting pointer cannot be dereferenced safely (the round-trip conversion in the opposite direction is not guaranteed; the same pointer may have multiple integer representations) The null pointer constant

NULL

or integer zero is not guaranteed to yield the null pointer value of the target type;

static_cast

or

implicit conversion

should be used for this purpose.

4)

Any value of type

std::nullptr_t

, including

nullptr

can be converted to any integral type as if it were

(void*)0

, but no value, not even

nullptr

can be converted to

std::nullptr_t

:

static_cast

should be used for that purpose.

(since C++11) 5)

Any object pointer type

T1*

can be converted to another object pointer type

cv T2*

. This is exactly equivalent to

static_cast<cv T2*>(static_cast<cv void*>(expression))

(which implies that if

T2

's alignment requirement is not stricter than

T1

's, the value of the pointer does not change and conversion of the resulting pointer back to its original type yields the original value). In any case, the resulting pointer may only be dereferenced safely if the dereferenced value is

type-accessible

.

6)

An

lvalue(until C++11)glvalue(since C++11)

expression of type

T1

can be converted to reference to another type

T2

. The result is that of

*reinterpret_cast<T2*>(p)

, where

p

is a pointer of type “pointer to

T1

” to the object or function designated by

expression

. No temporary is

materialized or(since C++17)

created, no copy is made, no constructors or conversion functions are called. The resulting reference can only be accessed safely if it is

type-accessible

.

7)

Any pointer to function can be converted to a pointer to a different function type. The result is unspecified, but converting such pointer back to pointer to the original function type yields the pointer to the original function. The resulting pointer can only be called safely if it function type is

call-compatible

with the original function type.

8)

On some implementations (in particular, on any POSIX compatible system as required by

dlsym

), a function pointer can be converted to

void*

or any other object pointer, or vice versa. If the implementation supports conversion in both directions, conversion to the original type yields the original value, otherwise the resulting pointer cannot be dereferenced or called safely.

9)

The null pointer value of any pointer type can be converted to any other pointer type, resulting in the null pointer value of that type. Note that the null pointer constant

nullptr

or any other value of type

std::nullptr_t

cannot be converted to a pointer with

reinterpret_cast

: implicit conversion or

static_cast

should be used for this purpose.

10) A pointer to member function can be converted to pointer to a different member function of a different type. Conversion back to the original type yields the original value, otherwise the resulting pointer cannot be used safely.

11) A pointer to member object of some class T1 can be converted to a pointer to another member object of another class T2. If T2's alignment is not stricter than T1's, conversion back to the original type T1 yields the original value, otherwise the resulting pointer cannot be used safely.

As with all cast expressions, the result is:

(since C++11) [edit] Type aliasing [edit] Type accessibility

If a type T_ref is similar to any of the following types, an object of dynamic type T_obj is type-accessible through a lvalue(until C++11)glvalue(since C++11) of type T_ref:

If a program attempts to read or modify the stored value of an object through a lvalue(until C++11)glvalue(since C++11) through which it is not type-accessible, the behavior is undefined.

This rule enables type-based alias analysis, in which a compiler assumes that the value read through a glvalue of one type is not modified by a write to a glvalue of a different type (subject to the exceptions noted above).

Note that many C++ compilers relax this rule, as a non-standard language extension, to allow wrong-type access through the inactive member of a union (such access is not undefined in C).

[edit] Call compatibility

If any of the following conditions is satisfied, a type T_call is call-compatible with a function type T_func:

If a function is called through an expression whose function type is not call-compatible with the type of the called function’s definition, the behavior is undefined.

[edit] Notes

Assuming that alignment requirements are met, a reinterpret_cast does not change the value of a pointer outside of a few limited cases dealing with pointer-interconvertible objects:

struct S1 { int a; } s1;
struct S2 { int a; private: int b; } s2; // not standard-layout
union U { int a; double b; } u = {0};
int arr[2];
 
int* p1 = reinterpret_cast<int*>(&s1); // value of p1 is "pointer to s1.a" because
                                       // s1.a and s1 are pointer-interconvertible
 
int* p2 = reinterpret_cast<int*>(&s2); // value of p2 is unchanged by reinterpret_cast
                                       // and is "pointer to s2". 
 
int* p3 = reinterpret_cast<int*>(&u);  // value of p3 is "pointer to u.a":
                                       // u.a and u are pointer-interconvertible
 
double* p4 = reinterpret_cast<double*>(p3); // value of p4 is "pointer to u.b": u.a and
                                            // u.b are pointer-interconvertible because
                                            // both are pointer-interconvertible with u
 
int* p5 = reinterpret_cast<int*>(&arr); // value of p5 is unchanged by reinterpret_cast
                                        // and is "pointer to arr"

Performing a class member access that designates a non-static data member or a non-static member function on a glvalue that does not actually designate an object of the appropriate type - such as one obtained through a reinterpret_cast - results in undefined behavior:

struct S { int x; };
struct T { int x; int f(); };
struct S1 : S {};    // standard-layout
struct ST : S, T {}; // not standard-layout
 
S s = {};
auto p = reinterpret_cast<T*>(&s); // value of p is "pointer to s"
auto i = p->x; // class member access expression is undefined behavior;
               // s is not a T object
p->x = 1; // undefined behavior
p->f();   // undefined behavior
 
S1 s1 = {};
auto p1 = reinterpret_cast<S*>(&s1); // value of p1 is "pointer to the S subobject of s1"
auto i = p1->x; // OK
p1->x = 1;      // OK
 
ST st = {};
auto p2 = reinterpret_cast<S*>(&st); // value of p2 is "pointer to st"
auto i = p2->x; // undefined behavior
p2->x = 1;      // undefined behavior

Many compilers issue "strict aliasing" warnings in such cases, even though technically such constructs run afoul of something other than the paragraph commonly known as the "strict aliasing rule".

The purpose of strict aliasing and related rules is to enable type-based alias analysis, which would be decimated if a program can validly create a situation where two pointers to unrelated types (e.g., an int* and a float*) could simultaneously exist and both can be used to load or store the same memory (see this email on SG12 reflector). Thus, any technique that is seemingly capable of creating such a situation necessarily invokes undefined behavior.

When it is needed to interpret the bytes of an object as a value of a different type, std::memcpy or std::bit_cast(since C++20) can be used:

If the implementation provides std::intptr_t and/or std::uintptr_t, then a cast from a pointer to an object type or cv void to these types is always well-defined. However, this is not guaranteed for a function pointer.

(since C++11)

In C, aggregate copy and assignment access the aggregate object as a whole. But in C++ such actions are always performed through a member function call, which accesses the individual subobjects rather than the entire object (or, in the case of unions, copies the object representation, i.e., via unsigned char).

[edit] Keywords

reinterpret_cast

[edit] Example

Demonstrates some uses of reinterpret_cast:

#include <cassert>
#include <cstdint>
#include <iostream>
 
int f() { return 42; }
 
int main()
{
    int i = 7;
 
    // pointer to integer and back
    std::uintptr_t v1 = reinterpret_cast<std::uintptr_t>(&i); // static_cast is an error
    std::cout << "The value of &i is " << std::showbase << std::hex << v1 << '\n';
    int* p1 = reinterpret_cast<int*>(v1);
    assert(p1 == &i);
 
    // pointer to function to another and back
    void(*fp1)() = reinterpret_cast<void(*)()>(f);
    // fp1(); undefined behavior
    int(*fp2)() = reinterpret_cast<int(*)()>(fp1);
    std::cout << std::dec << fp2() << '\n'; // safe
 
    // type aliasing through pointer
    char* p2 = reinterpret_cast<char*>(&i);
    std::cout << (p2[0] == '\x7' ? "This system is little-endian\n"
                                 : "This system is big-endian\n");
 
    // type aliasing through reference
    reinterpret_cast<unsigned int&>(i) = 42;
    std::cout << i << '\n';
 
    [[maybe_unused]] const int &const_iref = i;
    // int &iref = reinterpret_cast<int&>(
    //     const_iref); // compiler error - can't get rid of const
    // Must use const_cast instead: int &iref = const_cast<int&>(const_iref);
}

Possible output:

The value of &i is 0x7fff352c3580
42
This system is little-endian
42
[edit] Defect reports

The following behavior-changing defect reports were applied retroactively to previously published C++ standards.

DR Applied to Behavior as published Correct behavior CWG 195 C++98 conversion between function pointers
and object pointers not allowed made conditionally-supported CWG 658 C++98 the result of pointer conversions was unspecified
(except for conversions back to the original type) specification provided for pointers
whose pointed-to types satisfy
the alignment requirements CWG 799 C++98 it was unclear which identity conversion
can be done by reinterpret_cast made clear CWG 1268 C++11 reinterpret_cast could only cast
lvalues to reference types xvalues also allowed CWG 2780 C++98 reinterpret_cast could not cast
function lvalues to other reference types allowed CWG 2939 C++17 reinterpret_cast could cast
prvalues to rvalue reference types not allowed [edit] References
[edit] See also

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4