inline constexpr double e
e_v<double>inline constexpr double log2e
log2e_v<double>inline constexpr double log10e
log10e_v<double>inline constexpr double pi
pi_v<double>inline constexpr double inv_pi
inv_pi_v<double>inline constexpr double inv_sqrtpi
inv_sqrtpi_v<double>inline constexpr double ln2
ln2_v<double>inline constexpr double ln10
ln10_v<double>inline constexpr double sqrt2
sqrt2_v<double>inline constexpr double sqrt3
sqrt3_v<double>inline constexpr double inv_sqrt3
inv_sqrt3_v<double>inline constexpr double egamma
egamma_v<double>inline constexpr double phi
phi_v<double>A program that instantiates a primary template of a mathematical constant variable template is ill-formed.
The standard library specializes mathematical constant variable templates for all floating-point types (i.e. float, double, long double , and fixed width floating-point types(since C++23)).
A program may partially or explicitly specialize a mathematical constant variable template provided that the specialization depends on a program-defined type.
[edit] Example#include <cmath> #include <iomanip> #include <iostream> #include <limits> #include <numbers> #include <string_view> auto egamma_aprox(const unsigned iterations) { long double s{}; for (unsigned m{2}; m != iterations; ++m) if (const long double t{std::riemann_zetal(m) / m}; m % 2) s -= t; else s += t; return s; }; int main() { using namespace std::numbers; using namespace std::string_view_literals; const auto x = std::sqrt(inv_pi) / inv_sqrtpi + std::ceil(std::exp2(log2e)) + sqrt3 * inv_sqrt3 + std::exp(0); const auto v = (phi * phi - phi) + 1 / std::log2(sqrt2) + log10e * ln10 + std::pow(e, ln2) - std::cos(pi); std::cout << "The answer is " << x * v << '\n'; constexpr auto γ{"0.577215664901532860606512090082402"sv}; std::cout << "γ as 10ⶠsums of ±ζ(m)/m = " << egamma_aprox(1'000'000) << '\n' << "γ as egamma_v<float> = " << std::setprecision(std::numeric_limits<float>::digits10 + 1) << egamma_v<float> << '\n' << "γ as egamma_v<double> = " << std::setprecision(std::numeric_limits<double>::digits10 + 1) << egamma_v<double> << '\n' << "γ as egamma_v<long double> = " << std::setprecision(std::numeric_limits<long double>::digits10 + 1) << egamma_v<long double> << '\n' << "γ with " << γ.length() - 1 << " digits precision = " << γ << '\n'; }
Possible output:
The answer is 42 γ as 10ⶠsums of ±ζ(m)/m = 0.577215 γ as egamma_v<float> = 0.5772157 γ as egamma_v<double> = 0.5772156649015329 γ as egamma_v<long double> = 0.5772156649015328606 γ with 34 digits precision = 0.577215664901532860606512090082402[edit] See also represents exact rational fraction
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4