double exp ( double num );
/*floating-point-type*/
exp ( /*floating-point-type*/ num );
float expf( float num );
(2) (since C++11)long double expl( long double num );
(3) (since C++11)constexpr /*deduced-simd-t*/<V>
template< class Integer >
double exp ( Integer num );
Computes
e(
Euler's number,
2.7182818...) raised to the given power
num.
The library provides overloads ofstd::exp
for all cv-unqualified floating-point types as the type of the parameter.(since C++23)
A) Additional overloads are provided for all integer types, which are treated as double.
(since C++11) [edit] Parameters num - floating-point or integer value [edit] Return valueIf no errors occur, the base-e exponential of num (enum
) is returned.
If a range error occurs due to overflow, +HUGE_VAL, +HUGE_VALF
, or +HUGE_VALL
is returned.
If a range error occurs due to underflow, the correct result (after rounding) is returned.
[edit] Error handlingErrors are reported as specified in math_errhandling.
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
For IEEE-compatible type double, overflow is guaranteed if 709.8 < num, and underflow is guaranteed if num < -708.4.
The additional overloads are not required to be provided exactly as (A). They only need to be sufficient to ensure that for their argument num of integer type, std::exp(num) has the same effect as std::exp(static_cast<double>(num)).
[edit] Example#include <cerrno> #include <cfenv> #include <cmath> #include <cstring> #include <iomanip> #include <iostream> #include <numbers> // #pragma STDC FENV_ACCESS ON consteval double approx_e() { long double e{1.0}; for (auto fac{1ull}, n{1llu}; n != 18; ++n, fac *= n) e += 1.0 / fac; return e; } int main() { std::cout << std::setprecision(16) << "exp(1) = e¹ = " << std::exp(1) << '\n' << "numbers::e = " << std::numbers::e << '\n' << "approx_e = " << approx_e() << '\n' << "FV of $100, continuously compounded at 3% for 1 year = " << std::setprecision(6) << 100 * std::exp(0.03) << '\n'; // special values std::cout << "exp(-0) = " << std::exp(-0.0) << '\n' << "exp(-Inf) = " << std::exp(-INFINITY) << '\n'; // error handling errno = 0; std::feclearexcept(FE_ALL_EXCEPT); std::cout << "exp(710) = " << std::exp(710) << '\n'; if (errno == ERANGE) std::cout << " errno == ERANGE: " << std::strerror(errno) << '\n'; if (std::fetestexcept(FE_OVERFLOW)) std::cout << " FE_OVERFLOW raised\n"; }
Possible output:
exp(1) = e¹ = 2.718281828459045 numbers::e = 2.718281828459045 approx_e = 2.718281828459045 FV of $100, continuously compounded at 3% for 1 year = 103.045 exp(-0) = 1 exp(-Inf) = 0 exp(710) = inf errno == ERANGE: Numerical result out of range FE_OVERFLOW raised[edit] See also
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4