class T,
class Container = std::vector<T>,
class Compare = std::less<typename Container::value_type>
The priority queue is a container adaptor that provides constant time lookup of the largest (by default) element, at the expense of logarithmic insertion and extraction.
A user-provided Compare
can be supplied to change the ordering, e.g. using std::greater<T> would cause the smallest element to appear as the top().
Working with a priority_queue
is similar to managing a heap in some random access container, with the benefit of not being able to accidentally invalidate the heap.
std::priority_queue
are constexpr: it is possible to create and use std::priority_queue
objects in the evaluation of a constant expression.
However, std::priority_queue
objects generally cannot be constexpr, because any dynamically allocated storage must be released in the same evaluation of constant expression.
T
is not the same type as Container::value_type
. Container - The type of the underlying container to use to store the elements. The container must satisfy the requirements of SequenceContainer, and its iterators must satisfy the requirements of LegacyRandomAccessIterator. Additionally, it must provide the following functions with the usual semantics:
The standard containers std::vector (not including std::vector<bool>
) and std::deque satisfy these requirements.
Note that the Compare parameter is defined such that it returns true if its first argument comes before its second argument in a weak ordering. But because the priority queue outputs largest elements first, the elements that "come before" are actually output last. That is, the front of the queue contains the "last" element according to the weak ordering imposed by Compare.
[edit] Member types Member type Definitioncontainer_type
Container
[edit] value_compare
Compare
value_type
Container::value_type
[edit] size_type
Container::size_type[edit] reference
Container::reference
[edit] const_reference
Container::const_reference
[edit] [edit] Member objects Member name Definition the underlying container
priority_queue
priority_queue
#include <functional> #include <iostream> #include <queue> #include <string_view> #include <vector> template<typename T> void pop_println(std::string_view rem, T& pq) { std::cout << rem << ": "; for (; !pq.empty(); pq.pop()) std::cout << pq.top() << ' '; std::cout << '\n'; } template<typename T> void println(std::string_view rem, const T& v) { std::cout << rem << ": "; for (const auto& e : v) std::cout << e << ' '; std::cout << '\n'; } int main() { const auto data = {1, 8, 5, 6, 3, 4, 0, 9, 7, 2}; println("data", data); std::priority_queue<int> max_priority_queue; // Fill the priority queue. for (int n : data) max_priority_queue.push(n); pop_println("max_priority_queue", max_priority_queue); // std::greater<int> makes the max priority queue act as a min priority queue. std::priority_queue<int, std::vector<int>, std::greater<int>> min_priority_queue1(data.begin(), data.end()); pop_println("min_priority_queue1", min_priority_queue1); // Second way to define a min priority queue. std::priority_queue min_priority_queue2(data.begin(), data.end(), std::greater<int>()); pop_println("min_priority_queue2", min_priority_queue2); // Using a custom function object to compare elements. struct { bool operator()(const int l, const int r) const { return l > r; } } customLess; std::priority_queue custom_priority_queue(data.begin(), data.end(), customLess); pop_println("custom_priority_queue", custom_priority_queue); // Using lambda to compare elements. auto cmp = [](int left, int right) { return (left ^ 1) < (right ^ 1); }; std::priority_queue<int, std::vector<int>, decltype(cmp)> lambda_priority_queue(cmp); for (int n : data) lambda_priority_queue.push(n); pop_println("lambda_priority_queue", lambda_priority_queue); }
Output:
data: 1 8 5 6 3 4 0 9 7 2 max_priority_queue: 9 8 7 6 5 4 3 2 1 0 min_priority_queue1: 0 1 2 3 4 5 6 7 8 9 min_priority_queue2: 0 1 2 3 4 5 6 7 8 9 custom_priority_queue: 0 1 2 3 4 5 6 7 8 9 lambda_priority_queue: 8 9 6 7 4 5 2 3 0 1[edit] Defect reports
The following behavior-changing defect reports were applied retroactively to previously published C++ standards.
DR Applied to Behavior as published Correct behavior LWG 307 C++98Container
could not be std::vector<bool>
allowed LWG 2566 C++98 Missing the requirement for Container::value_type
ill-formed if T
is not the same type as Container::value_type
LWG 2684 C++98 priority_queue
takes a comparator
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4