Call signature
(1) (since C++20) (2) (since C++20)1) Reorders the elements in the range [
first,
last)
in such a way that the projection proj of all elements for which the predicate pred returns true precede the projection proj of elements for which predicate pred returns false. Relative order of elements is not preserved.
The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:
A subrange starting with an iterator to the first element of the second group and finishing with an iterator equal to last. (2) returns std::ranges::dangling if r is an rvalue of non-borrowed_range
type.
Given N = ranges::distance(first, last), exactly N applications of the predicate and projection. At most N / 2 swaps if I
models ranges::bidirectional_iterator, and at most N swaps otherwise.
struct partition_fn { template<std::permutable I, std::sentinel_for<I> S, class Proj = std::identity, std::indirect_unary_predicate<std::projected<I, Proj>> Pred> constexpr ranges::subrange<I> operator()(I first, S last, Pred pred, Proj proj = {}) const { first = ranges::find_if_not(first, last, std::ref(pred), std::ref(proj)); if (first == last) return {first, first}; for (auto i = ranges::next(first); i != last; ++i) { if (std::invoke(pred, std::invoke(proj, *i))) { ranges::iter_swap(i, first); ++first; } } return {std::move(first), std::move(last)}; } template<ranges::forward_range R, class Proj = std::identity, std::indirect_unary_predicate< std::projected<ranges::iterator_t<R>, Proj>> Pred> requires std::permutable<ranges::iterator_t<R>> constexpr ranges::borrowed_subrange_t<R> operator()(R&& r, Pred pred, Proj proj = {}) const { return (*this)(ranges::begin(r), ranges::end(r), std::ref(pred), std::ref(proj)); } }; inline constexpr partition_fn partition;[edit] Example
#include <algorithm> #include <forward_list> #include <functional> #include <iostream> #include <iterator> #include <ranges> #include <vector> namespace ranges = std::ranges; template<class I, std::sentinel_for<I> S, class Cmp = ranges::less> requires std::sortable<I, Cmp> void quicksort(I first, S last, Cmp cmp = Cmp {}) { using reference = std::iter_reference_t<I>; if (first == last) return; auto size = ranges::distance(first, last); auto pivot = ranges::next(first, size - 1); ranges::iter_swap(pivot, ranges::next(first, size / 2)); auto tail = ranges::partition(first, pivot, [=](reference em) { return std::invoke(cmp, em, *pivot); // em < pivot }); ranges::iter_swap(pivot, tail.begin()); quicksort(first, tail.begin(), std::ref(cmp)); quicksort(ranges::next(tail.begin()), last, std::ref(cmp)); } int main() { std::ostream_iterator<int> cout {std::cout, " "}; std::vector<int> v {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; std::cout << "Original vector: \t"; ranges::copy(v, cout); auto tail = ranges::partition(v, [](int i) { return i % 2 == 0; }); std::cout << "\nPartitioned vector: \t"; ranges::copy(ranges::begin(v), ranges::begin(tail), cout); std::cout << "â "; ranges::copy(tail, cout); std::forward_list<int> fl {1, 30, -4, 3, 5, -4, 1, 6, -8, 2, -5, 64, 1, 92}; std::cout << "\nUnsorted list: \t\t"; ranges::copy(fl, cout); quicksort(ranges::begin(fl), ranges::end(fl), ranges::greater {}); std::cout << "\nQuick-sorted list: \t"; ranges::copy(fl, cout); std::cout << '\n'; }
Possible output:
Original vector: 0 1 2 3 4 5 6 7 8 9 Partitioned vector: 0 8 2 6 4 â 5 3 7 1 9 Unsorted list: 1 30 -4 3 5 -4 1 6 -8 2 -5 64 1 92 Quick-sorted list: 92 64 30 6 5 3 2 1 1 1 -4 -4 -5 -8[edit] See also
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4