A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://en.cppreference.com/w/cpp/language/../error/error_code/../../../cpp/types/result_of.html below:

std::result_of, std::invoke_result - cppreference.com

template< class >

class result_of; // not defined

template< class F, class... ArgTypes >


class result_of<F(ArgTypes...)>;
(1) (since C++11)
(deprecated in C++17)
(removed in C++20)

template< class F, class... ArgTypes >
class invoke_result;

(2) (since C++17)

Deduces the return type of an INVOKE expression at compile time.

F must be a callable type, reference to function, or reference to callable type. Invoking F with ArgTypes... must be a well-formed expression.

(since C++11)
(until C++14)

F and all types in ArgTypes can be any complete type, array of unknown bound, or (possibly cv-qualified) void.

(since C++14)

If the program adds specializations for any of the templates described on this page, the behavior is undefined.

[edit] Member types Member type Definition type the return type of the Callable type F if invoked with the arguments ArgTypes.... Only defined if F can be called with the arguments ArgTypes... in unevaluated context.(since C++14) [edit] Helper types

template< class T >
using result_of_t = typename result_of<T>::type;

(1) (since C++14)
(deprecated in C++17)
(removed in C++20)

template< class F, class... ArgTypes >
using invoke_result_t = typename invoke_result<F, ArgTypes...>::type;

(2) (since C++17) [edit] Possible implementation
namespace detail
{
    template<class T>
    struct is_reference_wrapper : std::false_type {};
    template<class U>
    struct is_reference_wrapper<std::reference_wrapper<U>> : std::true_type {};
 
    template<class T>
    struct invoke_impl
    {
        template<class F, class... Args>
        static auto call(F&& f, Args&&... args)
            -> decltype(std::forward<F>(f)(std::forward<Args>(args)...));
    };
 
    template<class B, class MT>
    struct invoke_impl<MT B::*>
    {
        template<class T, class Td = typename std::decay<T>::type,
            class = typename std::enable_if<std::is_base_of<B, Td>::value>::type>
        static auto get(T&& t) -> T&&;
 
        template<class T, class Td = typename std::decay<T>::type,
            class = typename std::enable_if<is_reference_wrapper<Td>::value>::type>
        static auto get(T&& t) -> decltype(t.get());
 
        template<class T, class Td = typename std::decay<T>::type,
            class = typename std::enable_if<!std::is_base_of<B, Td>::value>::type,
            class = typename std::enable_if<!is_reference_wrapper<Td>::value>::type>
        static auto get(T&& t) -> decltype(*std::forward<T>(t));
 
        template<class T, class... Args, class MT1,
            class = typename std::enable_if<std::is_function<MT1>::value>::type>
        static auto call(MT1 B::*pmf, T&& t, Args&&... args)
            -> decltype((invoke_impl::get(
                std::forward<T>(t)).*pmf)(std::forward<Args>(args)...));
 
        template<class T>
        static auto call(MT B::*pmd, T&& t)
            -> decltype(invoke_impl::get(std::forward<T>(t)).*pmd);
    };
 
    template<class F, class... Args, class Fd = typename std::decay<F>::type>
    auto INVOKE(F&& f, Args&&... args)
        -> decltype(invoke_impl<Fd>::call(std::forward<F>(f),
            std::forward<Args>(args)...));
} // namespace detail
 
// Minimal C++11 implementation:
template<class> struct result_of;
template<class F, class... ArgTypes>
struct result_of<F(ArgTypes...)>
{
    using type = decltype(detail::INVOKE(std::declval<F>(), std::declval<ArgTypes>()...));
};
 
// Conforming C++14 implementation (is also a valid C++11 implementation):
namespace detail
{
    template<typename AlwaysVoid, typename, typename...>
    struct invoke_result {};
    template<typename F, typename...Args>
    struct invoke_result<
        decltype(void(detail::INVOKE(std::declval<F>(), std::declval<Args>()...))),
            F, Args...>
    {
        using type = decltype(detail::INVOKE(std::declval<F>(), std::declval<Args>()...));
    };
} // namespace detail
 
template<class> struct result_of;
template<class F, class... ArgTypes>
struct result_of<F(ArgTypes...)> : detail::invoke_result<void, F, ArgTypes...> {};
 
template<class F, class... ArgTypes>
struct invoke_result : detail::invoke_result<void, F, ArgTypes...> {};
[edit] Notes

As formulated in C++11, the behavior of std::result_of is undefined when INVOKE(std::declval<F>(), std::declval<ArgTypes>()...) is ill-formed (e.g. when F is not a callable type at all). C++14 changes that to a SFINAE (when F is not callable, std::result_of<F(ArgTypes...)> simply doesn't have the type member).

The motivation behind std::result_of is to determine the result of invoking a Callable, in particular if that result type is different for different sets of arguments.

F(Args...) is a function type with Args... being the argument types and F being the return type. As such, std::result_of suffers from several quirks that led to its deprecation in favor of std::invoke_result in C++17:

To avoid these quirks, result_of is often used with reference types as F and Args.... For example:

template<class F, class... Args>
std::result_of_t<F&&(Args&&...)> // instead of std::result_of_t<F(Args...)>, which is wrong
    my_invoke(F&& f, Args&&... args)
    {
        /* implementation */
    }
[edit] Notes [edit] Examples
#include <iostream>
#include <type_traits>
 
struct S
{
    double operator()(char, int&);
    float operator()(int) { return 1.0; }
};
 
template<class T>
typename std::result_of<T(int)>::type f(T& t)
{
    std::cout << "overload of f for callable T\n";
    return t(0);
}
 
template<class T, class U>
int f(U u)
{
    std::cout << "overload of f for non-callable T\n";
    return u;
}
 
int main()
{
    // the result of invoking S with char and int& arguments is double
    std::result_of<S(char, int&)>::type d = 3.14; // d has type double
    static_assert(std::is_same<decltype(d), double>::value, "");
 
    // std::invoke_result uses different syntax (no parentheses)
    std::invoke_result<S,char,int&>::type b = 3.14;
    static_assert(std::is_same<decltype(b), double>::value, "");
 
    // the result of invoking S with int argument is float
    std::result_of<S(int)>::type x = 3.14; // x has type float
    static_assert(std::is_same<decltype(x), float>::value, "");
 
    // result_of can be used with a pointer to member function as follows
    struct C { double Func(char, int&); };
    std::result_of<decltype(&C::Func)(C, char, int&)>::type g = 3.14;
    static_assert(std::is_same<decltype(g), double>::value, "");
 
    f<C>(1); // may fail to compile in C++11; calls the non-callable overload in C++14
}

Output:

overload of f for non-callable T
[edit] See also

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4