A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://en.cppreference.com/w/cpp/language/../error/error_code/../../../cpp/types/conjunction.html below:

std::conjunction - cppreference.com

template< class... B >
struct conjunction;

(since C++17)

Forms the logical conjunction of the type traits B..., effectively performing a logical AND on the sequence of traits.

The specialization std::conjunction<B1, ..., BN> has a public and unambiguous base that is

The member names of the base class, other than conjunction and operator=, are not hidden and are unambiguously available in conjunction.

Conjunction is short-circuiting: if there is a template type argument Bi with bool(Bi::value) == false, then instantiating conjunction<B1, ..., BN>::value does not require the instantiation of Bj::value for j > i.

If the program adds specializations for std::conjunction or std::conjunction_v, the behavior is undefined.

[edit] Template parameters B... - every template argument Bi for which Bi::value is instantiated must be usable as a base class and define member value that is convertible to bool [edit] Helper variable template

template< class... B >
constexpr bool conjunction_v = conjunction<B...>::value;

(since C++17) [edit] Possible implementation
template<class...>
struct conjunction : std::true_type {};
 
template<class B1>
struct conjunction<B1> : B1 {};
 
template<class B1, class... Bn>
struct conjunction<B1, Bn...>
    : std::conditional_t<bool(B1::value), conjunction<Bn...>, B1> {};
[edit] Notes

A specialization of conjunction does not necessarily inherit from either std::true_type or std::false_type: it simply inherits from the first B whose ::value, explicitly converted to bool, is false, or from the very last B when all of them convert to true. For example, std::conjunction<std::integral_constant<int, 2>, std::integral_constant<int, 4>>::value is 4.

The short-circuit instantiation differentiates conjunction from fold expressions: a fold expression, like (... && Bs::value), instantiates every B in Bs, while std::conjunction_v<Bs...> stops instantiation once the value can be determined. This is particularly useful if the later type is expensive to instantiate or can cause a hard error when instantiated with the wrong type.

[edit] Example
#include <iostream>
#include <type_traits>
 
// func is enabled if all Ts... have the same type as T
template<typename T, typename... Ts>
std::enable_if_t<std::conjunction_v<std::is_same<T, Ts>...>>
func(T, Ts...)
{
    std::cout << "All types in pack are the same.\n";
}
 
// otherwise
template<typename T, typename... Ts>
std::enable_if_t<!std::conjunction_v<std::is_same<T, Ts>...>>
func(T, Ts...)
{
    std::cout << "Not all types in pack are the same.\n";
}
 
template<typename T, typename... Ts>
constexpr bool all_types_are_same = std::conjunction_v<std::is_same<T, Ts>...>;
 
static_assert(all_types_are_same<int, int, int>);
static_assert(not all_types_are_same<int, int&, int>);
 
int main()
{
    func(1, 2, 3);
    func(1, 2, "hello!");
}

Output:

All types in pack are the same.
Not all types in pack are the same.
[edit] See also

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4