bool equal( InputIt1 first1, InputIt1 last1,
bool equal( ExecutionPolicy&& policy,
ForwardIt1 first1, ForwardIt1 last1,
bool equal( InputIt1 first1, InputIt1 last1,
class ForwardIt1, class ForwardIt2, class BinaryPred >
bool equal( ExecutionPolicy&& policy,
ForwardIt1 first1, ForwardIt1 last1,
bool equal( InputIt1 first1, InputIt1 last1,
bool equal( ExecutionPolicy&& policy,
ForwardIt1 first1, ForwardIt1 last1,
bool equal( InputIt1 first1, InputIt1 last1,
class ForwardIt1, class ForwardIt2, class BinaryPred >
bool equal( ExecutionPolicy&& policy,
ForwardIt1 first1, ForwardIt1 last1,
Checks whether [
first1,
last1)
and a range starting from first2 are equal:
[
first2,
last2)
.1,5) Elements are compared using operator==.
3,7) Elements are compared using the given binary predicate p.
2,4,6,8) Same as (1,3,5,7), but executed according to policy.
These overloads participate in overload resolution only if all following conditions are satisfied:
[edit] Parameters first1, last1 - the pair of iterators defining the first range of elements to compare first2, last2 - the pair of iterators defining the second range of elements to compare policy - the execution policy to use p - binary predicate which returns âtrue if the elements should be treated as equal.The signature of the predicate function should be equivalent to the following:
bool pred(const Type1 &a, const Type2 &b);
While the signature does not need to have const &, the function must not modify the objects passed to it and must be able to accept all values of type (possibly const) Type1
and Type2
regardless of value category (thus, Type1 & is not allowed, nor is Type1 unless for Type1
a move is equivalent to a copy(since C++11)).
The types Type1 and Type2 must be such that objects of types InputIt1 and InputIt2 can be dereferenced and then implicitly converted to Type1 and Type2 respectively. â
InputIt1, InputIt2
must meet the requirements of LegacyInputIterator. -ForwardIt1, ForwardIt2
must meet the requirements of LegacyForwardIterator. -BinaryPred
must meet the requirements of BinaryPredicate. [edit] Return value
1-4) If each corresponding elements in the two ranges are equal, returns true. Otherwise returns false.
5-8)If
std::distance(first1, last1)and
std::distance(first2, last2)are equal, and each corresponding elements in the two ranges are equal, returns
true. Otherwise returns
false.
[edit] ComplexityGiven \(\scriptsize N_1\)N1 as std::distance(first1, last1) and \(\scriptsize N_2\)N2 as std::distance(first2, last2):
1) At most \(\scriptsize N_1\)N1 comparisons using operator==.
2) \(\scriptsize O(N_1)\)O(N1) comparisons using operator==.
3) At most \(\scriptsize N_1\)N1 applications of the predicate p.
4) \(\scriptsize O(N_1)\)O(N1) applications of the predicate p.
5-8)If
InputIt1
and
InputIt2
are both
LegacyRandomAccessIterator, and
last1 - first1 != last2 - first2is
true, no comparison will be made.
Otherwise, given \(\scriptsize N\)N as \(\scriptsize \min(N_1,N_2)\)min(N1,N2):
5) At most \(\scriptsize N\)N comparisons using operator==.
6) \(\scriptsize O(N)\)O(N) comparisons using operator==.
7) At most \(\scriptsize N\)N applications of the predicate p.
8) \(\scriptsize O(N)\)O(N) applications of the predicate p.
[edit] ExceptionsThe overloads with a template parameter named ExecutionPolicy
report errors as follows:
ExecutionPolicy
is one of the standard policies, std::terminate is called. For any other ExecutionPolicy
, the behavior is implementation-defined.template<class InputIt1, class InputIt2> constexpr //< since C++20 bool equal(InputIt1 first1, InputIt1 last1, InputIt2 first2) { for (; first1 != last1; ++first1, ++first2) if (!(*first1 == *first2)) return false; return true; }equal (3)
template<class InputIt1, class InputIt2, class BinaryPred> constexpr //< since C++20 bool equal(InputIt1 first1, InputIt1 last1, InputIt2 first2, BinaryPred p) { for (; first1 != last1; ++first1, ++first2) if (!p(*first1, *first2)) return false; return true; }equal (5)
namespace detail { // random-access iterator implementation (allows quick range size detection) template<class RandomIt1, class RandomIt2> constexpr //< since C++20 bool equal(RandomIt1 first1, RandomIt1 last1, RandomIt2 first2, RandomIt2 last2, std::random_access_iterator_tag, std::random_access_iterator_tag) { if (last1 - first1 != last2 - first2) return false; for (; first1 != last1; ++first1, ++first2) if (!(*first1 == *first2)) return false; return true; } // input iterator implementation (needs to manually compare with âlast2â) template<class InputIt1, class InputIt2> constexpr //< since C++20 bool equal(InputIt1 first1, InputIt1 last1, InputIt2 first2, InputIt2 last2, std::input_iterator_tag, std::input_iterator_tag) { for (; first1 != last1 && first2 != last2; ++first1, ++first2) if (!(*first1 == *first2)) return false; return first1 == last1 && first2 == last2; } } template<class InputIt1, class InputIt2> constexpr //< since C++20 bool equal(InputIt1 first1, InputIt1 last1, InputIt2 first2, InputIt2 last2) { details::equal(first1, last1, first2, last2, typename std::iterator_traits<InputIt1>::iterator_category(), typename std::iterator_traits<InputIt2>::iterator_category()); }equal (7)
namespace detail { // random-access iterator implementation (allows quick range size detection) template<class RandomIt1, class RandomIt2, class BinaryPred> constexpr //< since C++20 bool equal(RandomIt1 first1, RandomIt1 last1, RandomIt2 first2, RandomIt2 last2, BinaryPred p, std::random_access_iterator_tag, std::random_access_iterator_tag) { if (last1 - first1 != last2 - first2) return false; for (; first1 != last1; ++first1, ++first2) if (!p(*first1, *first2)) return false; return true; } // input iterator implementation (needs to manually compare with âlast2â) template<class InputIt1, class InputIt2, class BinaryPred> constexpr //< since C++20 bool equal(InputIt1 first1, InputIt1 last1, InputIt2 first2, InputIt2 last2, BinaryPred p, std::input_iterator_tag, std::input_iterator_tag) { for (; first1 != last1 && first2 != last2; ++first1, ++first2) if (!p(*first1, *first2)) return false; return first1 == last1 && first2 == last2; } } template<class InputIt1, class InputIt2, class BinaryPred> constexpr //< since C++20 bool equal(InputIt1 first1, InputIt1 last1, InputIt2 first2, InputIt2 last2, BinaryPred p) { details::equal(first1, last1, first2, last2, p, typename std::iterator_traits<InputIt1>::iterator_category(), typename std::iterator_traits<InputIt2>::iterator_category()); }[edit] Notes
std::equal
should not be used to compare the ranges formed by the iterators from std::unordered_set, std::unordered_multiset, std::unordered_map, or std::unordered_multimap because the order in which the elements are stored in those containers may be different even if the two containers store the same elements.
When comparing entire containers or string views(since C++17) for equality, operator== for the corresponding type are usually preferred.
Sequential std::equal
is not guaranteed to be short-circuit. E.g. if the first pair elements of both ranges do not compare equal, the rest of elements may also be compared. Non-short-circuit comparison may happen when the ranges are compared with std::memcmp or implementation-specific vectorized algorithms.
The following code uses std::equal
to test if a string is a palindrome.
#include <algorithm> #include <iomanip> #include <iostream> #include <string_view> constexpr bool is_palindrome(const std::string_view& s) { return std::equal(s.cbegin(), s.cbegin() + s.size() / 2, s.crbegin()); } void test(const std::string_view& s) { std::cout << std::quoted(s) << (is_palindrome(s) ? " is" : " is not") << " a palindrome\n"; } int main() { test("radar"); test("hello"); }
Output:
"radar" is a palindrome "hello" is not a palindrome[edit] See also
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4