template< class T >
struct is_move_assignable;
template< class T >
struct is_trivially_move_assignable;
template< class T >
struct is_nothrow_move_assignable;
If T
is not a complete type, (possibly cv-qualified) void, or an array of unknown bound, the behavior is undefined.
If an instantiation of a template above depends, directly or indirectly, on an incomplete type, and that instantiation could yield a different result if that type were hypothetically completed, the behavior is undefined.
If the program adds specializations for any of the templates described on this page, the behavior is undefined.
[edit] Helper variable templates template< class T >inline constexpr bool is_move_assignable_v =
inline constexpr bool is_trivially_move_assignable_v =
inline constexpr bool is_nothrow_move_assignable_v =
T
is move-assignable, false otherwise
The trait std::is_move_assignable
is less strict than MoveAssignable because it does not check the type of the result of the assignment (which, for a MoveAssignable type, must be T&
), nor the semantic requirement that the target's value after the assignment is equivalent to the source's value before the assignment.
The type does not have to implement a move assignment operator in order to satisfy this trait; see MoveAssignable for details.
[edit] Example#include <iostream> #include <string> #include <type_traits> struct Foo { int n; }; struct NoMove { // prevents implicit declaration of default move assignment operator // however, the class is still move-assignable because its // copy assignment operator can bind to an rvalue argument NoMove& operator=(const NoMove&) { return *this; } }; int main() { std::cout << std::boolalpha << "std::string is nothrow move-assignable? " << std::is_nothrow_move_assignable<std::string>::value << '\n' << "int[2] is move-assignable? " << std::is_move_assignable<int[2]>::value << '\n' << "Foo is trivially move-assignable? " << std::is_trivially_move_assignable<Foo>::value << '\n' << "NoMove is move-assignable? " << std::is_move_assignable<NoMove>::value << '\n' << "NoMove is nothrow move-assignable? " << std::is_nothrow_move_assignable<NoMove>::value << '\n'; }
Output:
std::string is nothrow move-assignable? true int[2] is move-assignable? false Foo is trivially move-assignable? true NoMove is move-assignable? true NoMove is nothrow move-assignable? false[edit] Defect reports
The following behavior-changing defect reports were applied retroactively to previously published C++ standards.
DR Applied to Behavior as published Correct behavior LWG 2196 C++11 the behavior was unclear if T&& cannot be formed the value produced is false in this case [edit] See alsoRetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4