float hypotf( float x, float y );
(1) (since C99)double hypot( double x, double y );
(2) (since C99)long double hypotl( long double x, long double y );
(3) (since C99)#define hypot( x, y )
(4) (since C99)1-3) Computes the square root of the sum of the squares of x and y, without undue overflow or underflow at intermediate stages of the computation.
4) Type-generic macro: If any argument has type long double, the long double version of the function is called. Otherwise, if any argument has integer type or has type double, the double version of the function is called. Otherwise, the float version of the function is called.
The value computed by this function is the length of the hypotenuse of a right-angled triangle with sides of length x and y, or the distance of the point (x, y) from the origin (0, 0), or the magnitude of a complex number x+iy
.
If no errors occur, the hypotenuse of a right-angled triangle, \(\scriptsize{\sqrt{x^2+y^2} }\)âx2
+y2
, is returned.
If a range error due to overflow occurs, +HUGE_VAL, +HUGE_VALF
, or +HUGE_VALL
is returned.
If a range error due to underflow occurs, the correct result (after rounding) is returned.
[edit] Error handlingErrors are reported as specified in math_errhandling
.
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
hypot
is equivalent to fabs called with the non-zero argumenthypot
returns +â even if the other argument is NaNImplementations usually guarantee precision of less than 1 ulp (units in the last place): GNU, BSD.
hypot(x, y) is equivalent to cabs(x + I*y).
POSIX specifies that underflow may only occur when both arguments are subnormal and the correct result is also subnormal (this forbids naive implementations).
hypot(INFINITY, NAN) returns +â, but sqrt(INFINITY * INFINITY + NAN * NAN) returns NaN.
[edit] Example#include <errno.h> #include <fenv.h> #include <float.h> #include <math.h> #include <stdio.h> // #pragma STDC FENV_ACCESS ON int main(void) { // typical usage printf("(1,1) cartesian is (%f,%f) polar\n", hypot(1,1), atan2(1, 1)); // special values printf("hypot(NAN,INFINITY) = %f\n", hypot(NAN, INFINITY)); // error handling errno = 0; feclearexcept(FE_ALL_EXCEPT); printf("hypot(DBL_MAX,DBL_MAX) = %f\n", hypot(DBL_MAX, DBL_MAX)); if (errno == ERANGE) perror(" errno == ERANGE"); if (fetestexcept(FE_OVERFLOW)) puts(" FE_OVERFLOW raised"); }
Possible output:
(1,1) cartesian is (1.414214,0.785398) polar hypot(NAN,INFINITY) = inf hypot(DBL_MAX,DBL_MAX) = inf errno == ERANGE: Numerical result out of range FE_OVERFLOW raised[edit] References
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4