A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://en.cppreference.com/w/cpp/language/../algorithm/../../cpp/../c/numeric/complex/catanh.html below:

catanhf, catanh, catanhl - cppreference.com

(1) (since C99) (2) (since C99) (3) (since C99)

#define atanh( z )

(4) (since C99)

1-3) Computes the complex arc hyperbolic tangent of z with branch cuts outside the interval [−1; +1] along the real axis.

4)

Type-generic macro: If

z

has type

long double complex

,

catanhl

is called. if

z

has type

double complex

,

catanh

is called, if

z

has type

float complex

,

catanhf

is called. If

z

is real or integer, then the macro invokes the corresponding real function (

atanhf

,

atanh

,

atanhl

). If

z

is imaginary, then the macro invokes the corresponding real version of

atan

, implementing the formula

atanh(iy) = i atan(y)

, and the return type is imaginary.

[edit] Parameters [edit] Return value

If no errors occur, the complex arc hyperbolic tangent of z is returned, in the range of a half-strip mathematically unbounded along the real axis and in the interval [−iπ/2; +iπ/2] along the imaginary axis.

[edit] Error handling and special values

Errors are reported consistent with math_errhandling

If the implementation supports IEEE floating-point arithmetic,

[edit] Notes

Although the C standard names this function "complex arc hyperbolic tangent", the inverse functions of the hyperbolic functions are the area functions. Their argument is the area of a hyperbolic sector, not an arc. The correct name is "complex inverse hyperbolic tangent", and, less common, "complex area hyperbolic tangent".

Inverse hyperbolic tangent is a multivalued function and requires a branch cut on the complex plane. The branch cut is conventionally placed at the line segmentd (-∞,-1] and [+1,+∞) of the real axis.

The mathematical definition of the principal value of the inverse hyperbolic tangent is

atanh z =

.

For any z,

atanh(z) = [edit] Example
#include <stdio.h>
#include <complex.h>
 
int main(void)
{
    double complex z = catanh(2);
    printf("catanh(+2+0i) = %f%+fi\n", creal(z), cimag(z));
 
    double complex z2 = catanh(conj(2)); // or catanh(CMPLX(2, -0.0)) in C11
    printf("catanh(+2-0i) (the other side of the cut) = %f%+fi\n", creal(z2), cimag(z2));
 
    // for any z, atanh(z) = atan(iz)/i
    double complex z3 = catanh(1+2*I);
    printf("catanh(1+2i) = %f%+fi\n", creal(z3), cimag(z3));
    double complex z4 = catan((1+2*I)*I)/I;
    printf("catan(i * (1+2i))/i = %f%+fi\n", creal(z4), cimag(z4));
}

Output:

catanh(+2+0i) = 0.549306+1.570796i
catanh(+2-0i) (the other side of the cut) = 0.549306-1.570796i
catanh(1+2i) = 0.173287+1.178097i
catan(i * (1+2i))/i = 0.173287+1.178097i
[edit] References
[edit] See also

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4