Call signature
(1) (since C++20) (2) (since C++20)Within the specified range, finds the longest range which starting from the beginning of the specified range and represents a heap with respect to comp and proj.
1) The specified range is [
first,
last)
.
2) The specified range is r.
The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:
The last iterator iter in the specified range for which:
1) The range [
first,
iter)
is a heap with respect to comp and proj.
The range
[
ranges::begin(r),
iter)
is a heap with respect to
compand
proj.
[edit] Complexity\(\scriptsize O(N) \)O(N) applications of comp and proj, where \(\scriptsize N \)N is:
[edit] Possible implementationstruct is_heap_until_fn { template<std::random_access_iterator I, std::sentinel_for<I> S, class Proj = std::identity, std::indirect_strict_weak_order <std::projected<I, Proj>> Comp = ranges::less> constexpr I operator()(I first, S last, Comp comp = {}, Proj proj = {}) const { std::iter_difference_t<I> n{ranges::distance(first, last)}, dad{0}, son{1}; for (; son != n; ++son) { if (std::invoke(comp, std::invoke(proj, *(first + dad)), std::invoke(proj, *(first + son)))) return first + son; else if ((son % 2) == 0) ++dad; } return first + n; } template<ranges::random_access_range R, class Proj = std::identity, std::indirect_strict_weak_order <std::projected<ranges::iterator_t<R>, Proj>> Comp = ranges::less> constexpr ranges::borrowed_iterator_t<R> operator()(R&& r, Comp comp = {}, Proj proj = {}) const { return (*this)(ranges::begin(r), ranges::end(r), std::move(comp), std::move(proj)); } }; inline constexpr is_heap_until_fn is_heap_until{};[edit] Example
The example renders a given vector as a (balanced) Binary tree.
#include <algorithm> #include <cmath> #include <iostream> #include <iterator> #include <vector> void out(const auto& what, int n = 1) { while (n-- > 0) std::cout << what; } void draw_bin_tree(auto first, auto last) { auto bails = [](int n, int w) { auto b = [](int w) { out("â"), out("â", w), out("â´"), out("â", w), out("â"); }; n /= 2; if (!n) return; for (out(' ', w); n-- > 0;) b(w), out(' ', w + w + 1); out('\n'); }; auto data = [](int n, int w, auto& first, auto last) { for (out(' ', w); n-- > 0 && first != last; ++first) out(*first), out(' ', w + w + 1); out('\n'); }; auto tier = [&](int t, int m, auto& first, auto last) { const int n{1 << t}; const int w{(1 << (m - t - 1)) - 1}; bails(n, w), data(n, w, first, last); }; const auto size{std::ranges::distance(first, last)}; const int m{static_cast<int>(std::ceil(std::log2(1 + size)))}; for (int i{}; i != m; ++i) tier(i, m, first, last); } int main() { std::vector<int> v{3, 1, 4, 1, 5, 9}; std::ranges::make_heap(v); // probably mess up the heap v.push_back(2); v.push_back(6); out("v after make_heap and push_back:\n"); draw_bin_tree(v.begin(), v.end()); out("the max-heap prefix of v:\n"); const auto heap_end = std::ranges::is_heap_until(v); draw_bin_tree(v.begin(), heap_end); }
Output:
v after make_heap and push_back: 9 âââââ´ââââ 5 4 âââ´ââ âââ´ââ 1 1 3 2 ââ´â ââ´â ââ´â ââ´â 6 the max-heap prefix of v: 9 âââ´ââ 5 4 ââ´â ââ´â 1 1 3 2[edit] See also
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4