Call signature
(1) (since C++23)Helper concepts
template< class F, class T, class I >
concept /* indirectly-binary-left-foldable */ = /* see description */;
template< class F, class T, class I >
concept /* indirectly-binary-right-foldable */ = /* see description */;
Right-folds the elements of given range, that is, returns the result of evaluation of the chain expression:f(x1, f(x2, ...f(xn, init)))
, where x1
, x2
, ..., xn
are elements of the range.
Informally, ranges::fold_right
behaves like ranges::fold_left(views::reverse(r), init, /*flipped*/(f)).
The behavior is undefined if [
first,
last)
is not a valid range.
1) The range is [
first,
last)
.
Equivalent to:
Helper concepts
(3A) (exposition only*) template< class F, class T, class I >concept /*indirectly-binary-left-foldable*/ =
std::copy_constructible<F> &&
std::indirectly_readable<I> &&
std::invocable<F&, T, std::iter_reference_t<I>> &&
std::convertible_to<std::invoke_result_t<F&, T, std::iter_reference_t<I>>,
std::decay_t<std::invoke_result_t<F&, T, std::iter_reference_t<I>>>> &&
/*indirectly-binary-left-foldable-impl*/<F, T, I,
Equivalent to:
Helper concepts
template< class F, class T, class I >concept /*indirectly-binary-right-foldable*/ =
Helper class templates
template< class F >class /*flipped*/
{
F f; // exposition only
public:
template< class T, class U >
requires std::invocable<F&, U, T>
std::invoke_result_t<F&, U, T> operator()( T&&, U&& );
The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:
An object of type U that contains the result of right-fold of the given range over f, where U is equivalent to std::decay_t<std::invoke_result_t<F&, std::iter_reference_t<I>, T>>;.
If the range is empty, U(std::move(init)) is returned.
[edit] Possible implementationsstruct fold_right_fn { template<std::bidirectional_iterator I, std::sentinel_for<I> S, class T = std::iter_value_t<I>, /* indirectly-binary-right-foldable */<T, I> F> constexpr auto operator()(I first, S last, T init, F f) const { using U = std::decay_t<std::invoke_result_t<F&, std::iter_reference_t<I>, T>>; if (first == last) return U(std::move(init)); I tail = ranges::next(first, last); U accum = std::invoke(f, *--tail, std::move(init)); while (first != tail) accum = std::invoke(f, *--tail, std::move(accum)); return accum; } template<ranges::bidirectional_range R, class T = ranges::range_value_t<R>, /* indirectly-binary-right-foldable */<T, ranges::iterator_t<R>> F> constexpr auto operator()(R&& r, T init, F f) const { return (*this)(ranges::begin(r), ranges::end(r), std::move(init), std::ref(f)); } }; inline constexpr fold_right_fn fold_right;[edit] Complexity
Exactly ranges::distance(first, last) applications of the function object f.
[edit] NotesThe following table compares all constrained folding algorithms:
[edit] Example#include <algorithm> #include <complex> #include <functional> #include <iostream> #include <ranges> #include <string> #include <utility> #include <vector> using namespace std::literals; namespace ranges = std::ranges; int main() { auto v = {1, 2, 3, 4, 5, 6, 7, 8}; std::vector<std::string> vs{"A", "B", "C", "D"}; auto r1 = ranges::fold_right(v.begin(), v.end(), 6, std::plus<>()); // (1) std::cout << "r1: " << r1 << '\n'; auto r2 = ranges::fold_right(vs, "!"s, std::plus<>()); // (2) std::cout << "r2: " << r2 << '\n'; // Use a program defined function object (lambda-expression): std::string r3 = ranges::fold_right ( v, "A", [](int x, std::string s) { return s + ':' + std::to_string(x); } ); std::cout << "r3: " << r3 << '\n'; // Get the product of the std::pair::second of all pairs in the vector: std::vector<std::pair<char, float>> data{{'A', 2.f}, {'B', 3.f}, {'C', 3.5f}}; float r4 = ranges::fold_right ( data | ranges::views::values, 2.0f, std::multiplies<>() ); std::cout << "r4: " << r4 << '\n'; using CD = std::complex<double>; std::vector<CD> nums{{1, 1}, {2, 0}, {3, 0}}; #ifdef __cpp_lib_algorithm_default_value_type auto r5 = ranges::fold_right(nums, {7, 0}, std::multiplies{}); #else auto r5 = ranges::fold_right(nums, CD{7, 0}, std::multiplies{}); #endif std::cout << "r5: " << r5 << '\n'; }
Output:
r1: 42 r2: ABCD! r3: A:8:7:6:5:4:3:2:1 r4: 42 r5: (42,42)[edit] References
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4