Call signature
(1) (since C++23)Helper concepts
template< class F, class T, class I >
concept /* indirectly-binary-left-foldable */ = /* see description */;
Left-folds the elements of given range, that is, returns the result of evaluation of the chain expression:f(f(f(f(init, x1), x2), ...), xn)
, where x1
, x2
, ..., xn
are elements of the range.
Informally, ranges::fold_left
behaves like std::accumulate's overload that accepts a binary predicate.
The behavior is undefined if [
first,
last)
is not a valid range.
Equivalent to:
Helper concepts
(3A) (exposition only*) template< class F, class T, class I >concept /*indirectly-binary-left-foldable*/ =
std::copy_constructible<F> &&
std::indirectly_readable<I> &&
std::invocable<F&, T, std::iter_reference_t<I>> &&
std::convertible_to<std::invoke_result_t<F&, T, std::iter_reference_t<I>>,
std::decay_t<std::invoke_result_t<F&, T, std::iter_reference_t<I>>>> &&
/*indirectly-binary-left-foldable-impl*/<F, T, I,
The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:
An object of type U that contains the result of left-fold of the given range over f, where U is equivalent to std::decay_t<std::invoke_result_t<F&, T, std::iter_reference_t<I>>>.
If the range is empty, U(std::move(init)) is returned.
[edit] Possible implementationsstruct fold_left_fn { template<std::input_iterator I, std::sentinel_for<I> S, class T = std::iter_value_t<I>, /* indirectly-binary-left-foldable */<T, I> F> constexpr auto operator()(I first, S last, T init, F f) const { using U = std::decay_t<std::invoke_result_t<F&, T, std::iter_reference_t<I>>>; if (first == last) return U(std::move(init)); U accum = std::invoke(f, std::move(init), *first); for (++first; first != last; ++first) accum = std::invoke(f, std::move(accum), *first); return std::move(accum); } template<ranges::input_range R, class T = ranges::range_value_t<R>, /* indirectly-binary-left-foldable */<T, ranges::iterator_t<R>> F> constexpr auto operator()(R&& r, T init, F f) const { return (*this)(ranges::begin(r), ranges::end(r), std::move(init), std::ref(f)); } }; inline constexpr fold_left_fn fold_left;[edit] Complexity
Exactly ranges::distance(first, last) applications of the function object f.
[edit] NotesThe following table compares all constrained folding algorithms:
[edit] Example#include <algorithm> #include <complex> #include <functional> #include <iostream> #include <ranges> #include <string> #include <utility> #include <vector> int main() { namespace ranges = std::ranges; std::vector v{1, 2, 3, 4, 5, 6, 7, 8}; int sum = ranges::fold_left(v.begin(), v.end(), 0, std::plus<int>()); // (1) std::cout << "sum: " << sum << '\n'; int mul = ranges::fold_left(v, 1, std::multiplies<int>()); // (2) std::cout << "mul: " << mul << '\n'; // get the product of the std::pair::second of all pairs in the vector: std::vector<std::pair<char, float>> data {{'A', 2.f}, {'B', 3.f}, {'C', 3.5f}}; float sec = ranges::fold_left ( data | ranges::views::values, 2.0f, std::multiplies<>() ); std::cout << "sec: " << sec << '\n'; // use a program defined function object (lambda-expression): std::string str = ranges::fold_left ( v, "A", [](std::string s, int x) { return s + ':' + std::to_string(x); } ); std::cout << "str: " << str << '\n'; using CD = std::complex<double>; std::vector<CD> nums{{1, 1}, {2, 0}, {3, 0}}; #ifdef __cpp_lib_algorithm_default_value_type auto res = ranges::fold_left(nums, {7, 0}, std::multiplies{}); // (2) #else auto res = ranges::fold_left(nums, CD{7, 0}, std::multiplies{}); // (2) #endif std::cout << "res: " << res << '\n'; }
Output:
sum: 36 mul: 40320 sec: 42 str: A:1:2:3:4:5:6:7:8 res: (42,42)[edit] References
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4