Call signature
(1) template< std::forward_iterator I, std::sentinel_for<I> S, class T, class Proj = std::identity,
std::indirect_strict_weak_order
<const T*, std::projected<I, Proj>> Comp = ranges::less >
constexpr ranges::subrange<I> equal_range( I first, S last, const T& value,
class Proj = std::identity,
class T = std::projected_value_t<I, Proj>,
std::indirect_strict_weak_order
<const T*, std::projected<I, Proj>> Comp = ranges::less >
constexpr ranges::subrange<I> equal_range( I first, S last, const T& value,
1) Returns a view containing all elements equivalent to value in the range [
first,
last)
.
The range [
first,
last)
must be at least partially ordered with respect to value, i.e. it must satisfy all of the following requirements:
A fully-sorted range meets these criteria.
The returned view is constructed from two iterators, one pointing to the first element that is not less than value and another pointing to the first element greater than value. The first iterator may be alternatively obtained with std::ranges::lower_bound(), the second - with std::ranges::upper_bound().
2)Same as
(1), but uses
ras the source range, as if using the range
ranges::begin(r)as
firstand
ranges::end(r)as
last.
The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:
std::ranges::subrange containing a pair of iterators defining the wanted range, the first pointing to the first element that is not less than value and the second pointing to the first element greater than value.
If there are no elements not less than value, the last iterator (iterator that is equal to last or ranges::end(r)) is returned as the first element. Similarly if there are no elements greater than value, the last iterator is returned as the second element.
[edit] ComplexityThe number of comparisons performed is logarithmic in the distance between first and last (at most 2 * log2(last - first) + O(1) comparisons). However, for an iterator that does not model random_access_iterator
, the number of iterator increments is linear.
struct equal_range_fn { template<std::forward_iterator I, std::sentinel_for<I> S, class Proj = std::identity, class T = std::projected_value_t<I, Proj>, std::indirect_strict_weak_order <const T*, std::projected<I, Proj>> Comp = ranges::less> constexpr ranges::subrange<I> operator()(I first, S last, const T& value, Comp comp = {}, Proj proj = {}) const { return ranges::subrange ( ranges::lower_bound(first, last, value, std::ref(comp), std::ref(proj)), ranges::upper_bound(first, last, value, std::ref(comp), std::ref(proj)) ); } template<ranges::forward_range R, class Proj = std::identity, class T = std::projected_value_t<ranges::iterator_t<R>, Proj>, std::indirect_strict_weak_order <const T*, std::projected<ranges::iterator_t<R>, Proj>> Comp = ranges::less> constexpr ranges::borrowed_subrange_t<R> operator()(R&& r, const T& value, Comp comp = {}, Proj proj = {}) const { return (*this)(ranges::begin(r), ranges::end(r), value, std::ref(comp), std::ref(proj)); } }; inline constexpr equal_range_fn equal_range;[edit] Notes [edit] Example
#include <algorithm> #include <compare> #include <complex> #include <iostream> #include <vector> struct S { int number {}; char name {}; // note: name is ignored by these comparison operators friend bool operator== (const S s1, const S s2) { return s1.number == s2.number; } friend auto operator<=>(const S s1, const S s2) { return s1.number <=> s2.number; } friend std::ostream& operator<<(std::ostream& os, S o) { return os << '{' << o.number << ", '" << o.name << "'}"; } }; void println(auto rem, const auto& v) { for (std::cout << rem; const auto& e : v) std::cout << e << ' '; std::cout << '\n'; } int main() { // note: not ordered, only partitioned w.r.t. S defined below std::vector<S> vec { {1,'A'}, {2,'B'}, {2,'C'}, {2,'D'}, {4, 'D'}, {4,'G'}, {3,'F'} }; const S value{2, '?'}; namespace ranges = std::ranges; auto a = ranges::equal_range(vec, value); println("1. ", a); auto b = ranges::equal_range(vec.begin(), vec.end(), value); println("2. ", b); auto c = ranges::equal_range(vec, 'D', ranges::less {}, &S::name); println("3. ", c); auto d = ranges::equal_range(vec.begin(), vec.end(), 'D', ranges::less {}, &S::name); println("4. ", d); using CD = std::complex<double>; std::vector<CD> nums{{1, 0}, {2, 2}, {2, 1}, {3, 0}, {3, 1}}; auto cmpz = [](CD x, CD y) { return x.real() < y.real(); }; #ifdef __cpp_lib_algorithm_default_value_type auto p3 = ranges::equal_range(nums, {2, 0}, cmpz); #else auto p3 = ranges::equal_range(nums, CD{2, 0}, cmpz); #endif println("5. ", p3); }
Output:
1. {2, 'B'} {2, 'C'} {2, 'D'} 2. {2, 'B'} {2, 'C'} {2, 'D'} 3. {2, 'D'} {4, 'D'} 4. {2, 'D'} {4, 'D'} 5. (2,2) (2,1)[edit] See also returns an iterator to the first element not less than the given value
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4