double fdim ( double x, double y );
fdim ( /*floating-point-type*/ x,
float fdimf( float x, float y );
(2) (since C++11)long double fdiml( long double x, long double y );
(3) (since C++11)constexpr /*math-common-simd-t*/<V0, V1>
template< class Integer >
double fdim ( Integer x, Integer y );
1-3) Returns the positive difference between x and y, that is, if x > y, returns x - y, otherwise (i.e. if x <= y) returns +0. The library provides overloads of std::fdim
for all cv-unqualified floating-point types as the type of the parameters.(since C++23)
S) The SIMD overload performs an element-wise std::fdim
on v_xand v_y.
A) Additional overloads are provided for all integer types, which are treated as double.
(since C++11) [edit] Parameters x, y - floating-point or integer values [edit] Return valueIf successful, returns the positive difference between x and y.
If a range error due to overflow occurs, +HUGE_VAL, +HUGE_VALF
, or +HUGE_VALL
is returned.
If a range error due to underflow occurs, the correct value (after rounding) is returned.
[edit] Error handlingErrors are reported as specified in math_errhandling.
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
Equivalent to std::fmax(x - y, 0), except for the NaN handling requirements.
The additional overloads are not required to be provided exactly as (A). They only need to be sufficient to ensure that for their first argument num1 and second argument num2:
If num1 and num2 have arithmetic types, then std::fdim(num1, num2) has the same effect as std::fdim(static_cast</*common-floating-point-type*/>(num1),
static_cast</*common-floating-point-type*/>(num2)), where /*common-floating-point-type*/ is the floating-point type with the greatest floating-point conversion rank and greatest floating-point conversion subrank between the types of num1 and num2, arguments of integer type are considered to have the same floating-point conversion rank as double.
If no such floating-point type with the greatest rank and subrank exists, then overload resolution does not result in a usable candidate from the overloads provided.
(since C++23) [edit] Example#include <cerrno> #include <cfenv> #include <cmath> #include <cstring> #include <iostream> #ifndef __GNUC__ #pragma STDC FENV_ACCESS ON #endif int main() { std::cout << "fdim(4, 1) = " << std::fdim(4, 1) << '\n' << "fdim(1, 4) = " << std::fdim(1, 4) << '\n' << "fdim(4,-1) = " << std::fdim(4, -1) << '\n' << "fdim(1,-4) = " << std::fdim(1, -4) << '\n'; // error handling errno = 0; std::feclearexcept(FE_ALL_EXCEPT); std::cout << "fdim(1e308, -1e308) = " << std::fdim(1e308, -1e308) << '\n'; if (errno == ERANGE) std::cout << " errno == ERANGE: " << std::strerror(errno) << '\n'; if (std::fetestexcept(FE_OVERFLOW)) std::cout << " FE_OVERFLOW raised\n"; }
Output:
fdim(4, 1) = 3 fdim(1, 4) = 0 fdim(4,-1) = 5 fdim(1,-4) = 5 fdim(1e308, -1e308) = inf errno == ERANGE: Numerical result out of range FE_OVERFLOW raised[edit] See also
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4