Call signature
(1) (since C++20) class Proj = std::identity,
class T = std::projected_value_t<I, Proj> >
requires std::indirect_binary_predicate
<ranges::equal_to, std::projected<I, Proj>, const T*>
constexpr std::iter_difference_t<I>
Returns the number of elements in the range [
first,
last)
satisfying specific criteria.
1) Counts the elements that are equal to value.
3) Counts elements for which predicate p returns true.
The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:
Number of elements satisfying the condition.
[edit] ComplexityExactly last - first comparisons and projection.
[edit] NotesFor the number of elements in the range without any additional criteria, see std::ranges::distance.
[edit] Possible implementation count (1)struct count_fn { template<std::input_iterator I, std::sentinel_for<I> S, class Proj = std::identity, class T = std::projected_value_t<I, Proj>> requires std::indirect_binary_predicate<ranges::equal_to, std::projected<I, Proj>, const T*> constexpr std::iter_difference_t<I> operator()(I first, S last, const T& value, Proj proj = {}) const { std::iter_difference_t<I> counter = 0; for (; first != last; ++first) if (std::invoke(proj, *first) == value) ++counter; return counter; } template<ranges::input_range R, class Proj = std::identity class T = std::projected_value_t<ranges::iterator_t<R>, Proj>> requires std::indirect_binary_predicate<ranges::equal_to, std::projected<ranges::iterator_t<R>, Proj>, const T*> constexpr ranges::range_difference_t<R> operator()(R&& r, const T& value, Proj proj = {}) const { return (*this)(ranges::begin(r), ranges::end(r), value, std::ref(proj)); } }; inline constexpr count_fn count;count_if (3)
struct count_if_fn { template<std::input_iterator I, std::sentinel_for<I> S, class Proj = std::identity, std::indirect_unary_predicate<std::projected<I, Proj>> Pred> constexpr std::iter_difference_t<I> operator()(I first, S last, Pred pred, Proj proj = {}) const { std::iter_difference_t<I> counter = 0; for (; first != last; ++first) if (std::invoke(pred, std::invoke(proj, *first))) ++counter; return counter; } template<ranges::input_range R, class Proj = std::identity, std::indirect_unary_predicate< std::projected<ranges::iterator_t<R>, Proj>> Pred> constexpr ranges::range_difference_t<R> operator()(R&& r, Pred pred, Proj proj = {}) const { return (*this)(ranges::begin(r), ranges::end(r), std::ref(pred), std::ref(proj)); } }; inline constexpr count_if_fn count_if;[edit] Example
#include <algorithm> #include <cassert> #include <complex> #include <iostream> #include <vector> int main() { std::vector<int> v{1, 2, 3, 4, 4, 3, 7, 8, 9, 10}; namespace ranges = std::ranges; // determine how many integers in a std::vector match a target value. int target1 = 3; int target2 = 5; int num_items1 = ranges::count(v.begin(), v.end(), target1); int num_items2 = ranges::count(v, target2); std::cout << "number: " << target1 << " count: " << num_items1 << '\n'; std::cout << "number: " << target2 << " count: " << num_items2 << '\n'; // use a lambda expression to count elements divisible by 3. int num_items3 = ranges::count_if(v.begin(), v.end(), [](int i){ return i % 3 == 0; }); std::cout << "number divisible by three: " << num_items3 << '\n'; // use a lambda expression to count elements divisible by 11. int num_items11 = ranges::count_if(v, [](int i){ return i % 11 == 0; }); std::cout << "number divisible by eleven: " << num_items11 << '\n'; std::vector<std::complex<double>> nums{{4, 2}, {1, 3}, {4, 2}}; #ifdef __cpp_lib_algorithm_default_value_type auto c = ranges::count(nums, {4, 2}); #else auto c = ranges::count(nums, std::complex<double>{4, 2}); #endif assert(c == 2); }
Output:
number: 3 count: 2 number: 5 count: 0 number divisible by three: 3 number divisible by eleven: 0[edit] See also
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4