Call signature
(1) (since C++20) (2) (since C++20)Helper type
(3) (since C++20) 1)Transforms the range
[
first,
last)
into the next
permutation, where the set of all permutations is ordered
lexicographicallywith respect to binary comparison function object
compand projection function object
proj. Returns
{last, true}if such a
"next permutation"exists; otherwise transforms the range into the lexicographically first permutation as if by
ranges::sort(first, last, comp, proj), and returns
{last, false}.
The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:
range
of elements to permute comp - comparison FunctionObject which returns true if the first argument is less than the second proj - projection to apply to the elements [edit] Return value
1) ranges::next_permutation_result<I>{last, true} if the new permutation is lexicographically greater than the old one. ranges::next_permutation_result<I>{last, false} if the last permutation was reached and the range was reset to the first permutation.
[edit] ExceptionsAny exceptions thrown from iterator operations or the element swap.
[edit] ComplexityAt most \(\scriptsize N/2\)N / 2 swaps, where \(\scriptsize N\)N is ranges::distance(first, last) in case (1) or ranges::distance(r) in case (2). Averaged over the entire sequence of permutations, typical implementations use about 3 comparisons and 1.5 swaps per call.
[edit] NotesImplementations (e.g. MSVC STL) may enable vectorization when the iterator type models contiguous_iterator
and swapping its value type calls neither non-trivial special member function nor ADL-found swap
.
struct next_permutation_fn { template<std::bidirectional_iterator I, std::sentinel_for<I> S, class Comp = ranges::less, class Proj = std::identity> requires std::sortable<I, Comp, Proj> constexpr ranges::next_permutation_result<I> operator()(I first, S last, Comp comp = {}, Proj proj = {}) const { // check that the sequence has at least two elements if (first == last) return {std::move(first), false}; I i_last{ranges::next(first, last)}; I i{i_last}; if (first == --i) return {std::move(i_last), false}; // main "permutating" loop for (;;) { I i1{i}; if (std::invoke(comp, std::invoke(proj, *--i), std::invoke(proj, *i1))) { I j{i_last}; while (!std::invoke(comp, std::invoke(proj, *i), std::invoke(proj, *--j))) {} std::iter_swap(i, j); std::reverse(i1, i_last); return {std::move(i_last), true}; } // permutation "space" is exhausted if (i == first) { std::reverse(first, i_last); return {std::move(i_last), false}; } } } template<ranges::bidirectional_range R, class Comp = ranges::less, class Proj = std::identity> requires std::sortable<ranges::iterator_t<R>, Comp, Proj> constexpr ranges::next_permutation_result<ranges::borrowed_iterator_t<R>> operator()(R&& r, Comp comp = {}, Proj proj = {}) const { return (*this)(ranges::begin(r), ranges::end(r), std::move(comp), std::move(proj)); } }; inline constexpr next_permutation_fn next_permutation {};[edit] Example
#include <algorithm> #include <array> #include <compare> #include <functional> #include <iostream> #include <string> struct S { char c; int i; auto operator<=>(const S&) const = default; friend std::ostream& operator<<(std::ostream& os, const S& s) { return os << "{'" << s.c << "', " << s.i << "}"; } }; auto print = [](auto const& v, char term = ' ') { std::cout << "{ "; for (const auto& e : v) std::cout << e << ' '; std::cout << '}' << term; }; int main() { std::cout << "Generate all permutations (iterators case):\n"; std::string s{"abc"}; do { print(s); } while (std::ranges::next_permutation(s.begin(), s.end()).found); std::cout << "\n" "Generate all permutations (range case):\n"; std::array a{'a', 'b', 'c'}; do { print(a); } while (std::ranges::next_permutation(a).found); std::cout << "\n" "Generate all permutations using comparator:\n"; using namespace std::literals; std::array z{"â"s, "â"s, "â"s}; do { print(z); } while (std::ranges::next_permutation(z, std::greater()).found); std::cout << "\n" "Generate all permutations using projection:\n"; std::array<S, 3> r{S{'A',3}, S{'B',2}, S{'C',1}}; do { print(r, '\n'); } while (std::ranges::next_permutation(r, {}, &S::c).found); }
Output:
Generate all permutations (iterators case): { a b c } { a c b } { b a c } { b c a } { c a b } { c b a } Generate all permutations (range case): { a b c } { a c b } { b a c } { b c a } { c a b } { c b a } Generate all permutations using comparator: { â â â } { â â â } { â â â } { â â â } { â â â } { â â â } Generate all permutations using projection: { {'A', 3} {'B', 2} {'C', 1} } { {'A', 3} {'C', 1} {'B', 2} } { {'B', 2} {'A', 3} {'C', 1} } { {'B', 2} {'C', 1} {'A', 3} } { {'C', 1} {'A', 3} {'B', 2} } { {'C', 1} {'B', 2} {'A', 3} }[edit] See also generates the next smaller lexicographic permutation of a range of elements
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4