Andrew, R. M.: Global CO2 emissions from cement production, 1928â2017, Earth Syst. Sci. Data, 10, 2213â2239, https://doi.org/10.5194/essd-10-2213-2018, 2018.â
Andrew, R. M.: Global CO2 emissions from cement production, 1928â2018, Earth Syst. Sci. Data, 11, 1675â1710, https://doi.org/10.5194/essd-11-1675-2019, 2019.â
Andrew, R. M.: Timely estimates of India's annual and monthly fossil CO2 emissions, Earth Syst. Sci. Data, 12, 2411â2421, https://doi.org/10.5194/essd-12-2411-2020, 2020.â
Boden, T. A., Marland, G., and Andres, R. J.: Estimates of Global, Regional, and National Annual CO2 Emissions from Fossil-Fuel Burning, Hydraulic Cement Prduction, and Gas Flaring: 1950â1992 (NDP-030/R6), Oak Ridge, available at: https://cdiac.ess-dive.lbl.gov/epubs/ndp/ndp030/ndp0301.htm (last access: 1 April 2020), 1995.â
Boden, T. A., Marland, G., and Andres, R. J.: Global, Regional, and National Fossil-Fuel CO2 Emissions, Oak Ridge, TN, United States, 2017.â
Bossink, B. A. G. and Brouwers, H. J. H.: Construction Waste: Quantification and Source Evaluation, J. Constr. Eng. Manag., 122, 55â60, https://doi.org/10.1061/(ASCE)0733-9364(1996)122:1(55), 1996.â
Cao, Z., Shen, L., Løvik, A. N., Müller, D. B., and Liu, G.: Elaborating the History of Our Cementing Societies: An in-Use Stock Perspective, Environ. Sci. Technol., 51, 11468â11475, https://doi.org/10.1021/acs.est.7b03077, 2017.â
Cao, Z., Myers, R. J., Lupton, R. C., Duan, H., Sacchi, R., Zhou, N., Reed Miller, T., Cullen, J. M., Ge, Q., and Liu, G.: The sponge effect and carbon emission mitigation potentials of the global cement cycle, Nat. Commun., 11, 3777, https://doi.org/10.1038/s41467-020-17583-w, 2020.â
China Cement Association (CCA): China Cement Almanac, China Building Industry Press, Beijing, China, 2001â2015.â
El-Turki, A., Carter, M. A., Wilson, M. A., Ball, R. J., and Allen, G. C.: A microbalance study of the effects of hydraulicity and sand grain size on carbonation of lime and cement, Constr. Build. Mater., 23, 1423â1428, https://doi.org/10.1016/j.conbuildmat.2008.07.006, 2009.â
Friedlingstein, P., Jones, M. W., O'Sullivan, M., Andrew, R. M., Hauck, J., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C., Bakker, D. C. E., Canadell, J. G., Ciais, P., Jackson, R. B., Anthoni, P., Barbero, L., Bastos, A., Bastrikov, V., Becker, M., Bopp, L., Buitenhuis, E., Chandra, N., Chevallier, F., Chini, L. P., Currie, K. I., Feely, R. A., Gehlen, M., Gilfillan, D., Gkritzalis, T., Goll, D. S., Gruber, N., Gutekunst, S., Harris, I., Haverd, V., Houghton, R. A., Hurtt, G., Ilyina, T., Jain, A. K., Joetzjer, E., Kaplan, J. O., Kato, E., Klein Goldewijk, K., Korsbakken, J. I., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A., Lienert, S., Lombardozzi, D., Marland, G., McGuire, P. C., Melton, J. R., Metzl, N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I., Neill, C., Omar, A. M., Ono, T., Peregon, A., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., Séférian, R., Schwinger, J., Smith, N., Tans, P. P., Tian, H., Tilbrook, B., Tubiello, F. N., van der Werf, G. R., Wiltshire, A. J., and Zaehle, S.: Global Carbon Budget 2019, Earth Syst. Sci. Data, 11, 1783â1838, https://doi.org/10.5194/essd-11-1783-2019, 2019.â
Gao, T., Shen, L., Shen, M., Liu, L., Chen, F. and Gao, L.: Evolution and projection of CO2 emissions for China's cement industry from 1980 to 2020, Renew. Sust. Energ Rev., 74, 522â537, https://doi.org/10.1016/j.rser.2017.02.006, 2017.â
Hanle, L., Maldonado, Pedro Onuma, E., Milos, T., and van Oss, H. G.: 2006 IPCC â Guidelines for National Greenhouse Gas Inventories: Industrial Processes and Product Use, available at: https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol3.html (last access: 10 August 2020), 2006.â
Huang, T., Shi, F., Tanikawa, H., Fei, J., and Han, J.: Materials demand and environmental impact of buildings construction and demolition in China based on dynamic material flow analysis, Resour. Conserv. Recy., 72, 91â101, https://doi.org/10.1016/j.resconrec.2012.12.013, 2013.â
Huntzinger, D. N., Gierke, J. S., Kawatra, S. K., Eisele, T. C. and Sutter, L. L.: Carbon dioxide sequestration in cement kiln dust through mineral carbonation, Environ. Sci. Technol., 43, 1986â1992, https://doi.org/10.1021/es802910z, 2009a.â
Huntzinger, D. N., Gierke, J. S., Sutter, L. L., Kawatra, S. K., and Eisele, T. C.: Mineral carbonation for carbon sequestration in cement kiln dust from waste piles, J. Hazard. Mater., 168, 31â37, https://doi.org/10.1016/j.jhazmat.2009.01.122, 2009b.â
Hyvert, N., Sellier, A., Duprat, F., Rougeau, P., and Francisco, P.: Dependency of C-S-H carbonation rate on CO2 pressure to explain transition from accelerated tests to natural carbonation, Cem. Concr. Res., 40, 1582â1589, https://doi.org/10.1016/j.cemconres.2010.06.010, 2010.â
IEA and WBCSD: Technology Roadmap: Low-Carbon Transition in the Cement Industry, IEA, Paris, available at: https://www.iea.org/reports/technology-roadmap-low-carbon-transition-in-the-cement-industry (last access: 22 August 2020), 2018.â
industryAbout: World â Cement Industry Map, available at: https://www.industryabout.com/world-cement-industry-map (last access: 22 August 2020), 2019.â
Kaliyavaradhan, S. K., Ling, T. C., and Mo, K. H.: Valorization of waste powders from cement-concrete life cycle: A pathway to circular future, J. Clean. Prod., 268, 122358, https://doi.org/10.1016/j.jclepro.2020.122358, 2020.â
Khanna, O. S.: Characterization and utilization of cement kiln dusts (CKDs) as partial replacements of Portland cement â NASA/ADS, University of Toronto, available at: https://ui.adsabs.harvard.edu/abs/2009PhDT .252K/abstract (last access: 31 July 2020), 2009.â
Kikuchi, T. and Kuroda, Y.: Carbon Dioxide Uptake in Demolished and Crushed Concrete, J. Adv. Concr. Technol., 9, 115â124, https://doi.org/10.3151/jact.9.115, 2011.â
Lagerblad, B.: Carbon dioxide uptake during concrete life cycle â State of the art, Cement och Betong Institutet, Stockholm, 47 pp., 2005.â
Lu, W., Yuan, H., Li, J., Hao, J. J. L., Mi, X., and Ding, Z.: An empirical investigation of construction and demolition waste generation rates in Shenzhen city, South China, Waste Manag., 31, 680â687, https://doi.org/10.1016/j.wasman.2010.12.004, 2011.â
Lutz, H. and Bayer, R.: Dry Mortars, in: Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2010.â
Marland, G., Boden, T. A., Griffin, R. C., Huang, S. F., Kanciruk, P., and Nelson, T. R.: Estimates of CO2 emissions from fossil fuel burning and cement manufacturing, based on the United Nations energy statistics and the US Bureau of Mines cement manufacturing data, Oak Ridge, TN, United States, 1989.â
MIIT: Building materials, available at: http://www.miit.gov.cn/n1146312/n1146904/n1648356/n1648361/index.html (last access: 22 August 2020), 2019.â
NBS: National data, available at: https://data.stats.gov.cn/ (last access: 22 August 2020), 2019.â
Pade, C. and Guimaraes, M.: The CO2 uptake of concrete in a 100 year perspective, Cem. Concr. Res., 37, 1348â1356, https://doi.org/10.1016/j.cemconres.2007.06.009, 2007.â
Pan, S. Y., Chen, Y. H., Fan, L. S., Kim, H., Gao, X., Ling, T. C., Chiang, P. C., Pei, S. L. and Gu, G.: CO2 mineralization and utilization by alkaline solid wastes for potential carbon reduction, Nat. Sustain., 3, 399â405, https://doi.org/10.1038/s41893-020-0486-9, 2020.â
Papadakis, V. G., Vayenas, C. G., and Fardis, M. N.: Experimental investigation and mathematical modeling of the concrete carbonation problem, Chem. Eng. Sci., 46, 1333â1338, https://doi.org/10.1016/0009-2509(91)85060-B, 1991.â
Pommer, K. and Pade, C.: Guidelines â Uptake of carbon dioxide in the life cycle inventory of concrete, Danish Technological Institute, ISBN: 87-7756-757-9, 2005.â
Rogelj, J., Shindell, D., Jiang, K., Fifita, S., Forster, P., Ginzburg, V., Handa, C., Kheshgi, H., Kobayashi, S., Kriegler, E., Mundaca, L., Séférian, R. and Vilariño, M. V.: Mitigation Pathways Compatible with 1.5ââC in the Context of Sustainable Development, available at: https://www.ipcc.ch/site/assets/uploads/sites/2/2019/02/SR15_Chapter2_Low_Res.pdf (last access: 2 September 2020), 2018.â
Sanjuán, M. Ã., Andrade, C., Mora, P., and Zaragoza, A.: Carbon Dioxide Uptake by Cement-Based Materials: A Spanish Case Study, Appl. Sci., 10, 339, https://doi.org/10.3390/app10010339, 2020.â
Seo, M., Lee, S.-Y., Lee, C., and Cho, S.-S.: Recycling of Cement Kiln Dust as a Raw Material for Cement, Environments, 6, 113, https://doi.org/10.3390/environments6100113, 2019.â
Shen, L., Zhao, J., Wang, L., Liu, L., Wang, Y., Yao, Y., Geng, Y., Gao, T., and Cao, Z.: Calculation and evaluation on carbon emission factor of cement production in China, Chinese Sci. Bull., 61, 2926â2938, https://doi.org/10.1360/N972016-00037, 2016.â
Siriwardena, D. P. and Peethamparan, S.: Quantification of CO2 sequestration capacity and carbonation rate of alkaline industrial byproducts, Constr. Build. Mater., 91, 216â224, https://doi.org/10.1016/j.conbuildmat.2015.05.035, 2015.â
Tong, D., Zhang, Q., Davis, S. J., Liu, F., Zheng, B., Geng, G., Xue, T., Li, M., Hong, C., Lu, Z., Streets, D. G., Guan, D., and He, K.: Targeted emission reductions from global super-polluting power plant units, Nat. Sustain., 1, 59â68, https://doi.org/10.1038/s41893-017-0003-y, 2018.â
Tong, D., Zhang, Q., Zheng, Y., Caldeira, K., Shearer, C., Hong, C., Qin, Y., and Davis, S. J.: Committed emissions from existing energy infrastructure jeopardize 1.5 âC climate target, Nature, 572, 373â377, https://doi.org/10.1038/s41586-019-1364-3, 2019.â
USEPA: Cement Kiln Dust Report to Congress, available at: https://archive.epa.gov/epawaste/nonhaz/industrial/special/web/html/cement2.html (last access: 31 July 2020), 1993.â
Wang, J. Y., Bing, L. F, Tong, D., Guo, R., and Xi, F. M.: Global CO2 uptake of cement in 1930â2019 (Version 3) [Data set], Zenodo, https://doi.org/10.5281/zenodo.4459729, 2021.â
Winter, C. and Plank, J.: The European dry-mix mortar industry (Part 1), ZKG Int., 60, 62â69, 2007.â
Xi, F., Davis, S. J., Ciais, P., Crawford-Brown, D., Guan, D., Pade, C., Shi, T., Syddall, M., Lv, J., Ji, L., Bing, L., Wang, J., Wei, W., Yang, K. H., Lagerblad, B., Galan, I., Andrade, C., Zhang, Y., and Liu, Z.: Substantial global carbon uptake by cement carbonation, Nat. Geosci., 9, 880â883, https://doi.org/10.1038/ngeo2840, 2016.â
Xu, J. H., Fleiter, T., Eichhammer, W., and Fan, Y.: Energy consumption and CO2 emissions in China's cement industry: A perspective from LMDI decomposition analysis, Energ. Policy, 50, 821â832, https://doi.org/10.1016/j.enpol.2012.08.038, 2012.â
Xu, J. H., Fleiter, T., Fan, Y., and Eichhammer, W.: CO2 emissions reduction potential in China's cement industry compared to IEA's Cement Technology Roadmap up to 2050, Appl. Energy, 130, 592â602, https://doi.org/10.1016/j.apenergy.2014.03.004, 2014. â
Yang, K. H., Seo, E. A., and Tae, S. H.: Carbonation and CO2 uptake of concrete, Environ. Impact Assess. Rev., 46, 43â52, https://doi.org/10.1016/j.eiar.2014.01.004, 2014.â
Yoon, I. S., Ãopuroglu, O., and Park, K. B.: Effect of global climatic change on carbonation progress of concrete, Atmos. Environ., 41, 7274â7285, https://doi.org/10.1016/j.atmosenv.2007.05.028, 2007.â
Zhang, S., Worrell, E., and Crijns-Graus, W.: Evaluating co-benefits of energy efficiency and air pollution abatement in China's cement industry, Appl. Energy, 147, 192â213, https://doi.org/10.1016/j.apenergy.2015.02.081, 2015.â
Zhao, Y., Nielsen, C. P., Lei, Y., McElroy, M. B., and Hao, J.: Quantifying the uncertainties of a bottom-up emission inventory of anthropogenic atmospheric pollutants in China, Atmos. Chem. Phys., 11, 2295â2308, https://doi.org/10.5194/acp-11-2295-2011, 2011.â
Zhou, H.: Construction and Installation Engineering Budget Manual, China Machine Press, 2003.â
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.3