Showing content from https://doi.org/10.3934/fods.2022020 below:
Data based quantification of synchronization
[1] D. M. Abrams, R. Mirollo, S. H. Strogatz and D. A. Wiley, Solvable model for chimera states of coupled oscillators, Physical Review Letters, 101 (2008), 084103. doi: 10.1103/PhysRevLett.101.084103. [2] V. S. Afraimovich, N. N. Verichev and M. I. Rabinovich, Stochastic synchronization of oscillation in dissipative systems, Radiophysics and Quantum Electronics, 29 (1986), 795-803. doi: 10.1007/BF01034476. [3] C. Andrieu and G. O. Roberts, The pseudo-marginal approach for efficient monte carlo computations, The Annals of Statistics, 37 (2009), 697-725. doi: 10.1214/07-AOS574. [4] A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno and C. Zhou, Synchronization in complex networks, Physics Reports, 469 (2008), 93-153. doi: 10.1016/j.physrep.2008.09.002. [5] J. Arnhold, P. Grassberger, K. Lehnertz and C. E. Elger, A robust method for detecting interdependences: Application to intracranially recorded eeg, Physica D: Nonlinear Phenomena, 134 (1999), 419-430. doi: 10.1016/S0167-2789(99)00140-2. [6] P. Ashwin, J. Buescu and I. Stewart, Bubbling of attractors and synchronisation of chaotic oscillators, Physics Letters A, 193 (1994), 126-139. doi: 10.1016/0375-9601(94)90947-4. [7] B. B. R. Boaretto, R. C. Budzinski, T. L. Prado, J. Kurths and S. R. Lopes, Neuron dynamics variability and anomalous phase synchronization of neural networks, Chaos: An Interdisciplinary Journal of Nonlinear Science, 28 (2018), 106304. doi: 10.1063/1.5023878. [8] S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares and C. S. Zhou, The synchronization of chaotic systems, Physics Reports, 366 (2002), 1-101. doi: 10.1016/S0370-1573(02)00137-0. [9] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez and D.-U. Hwang, Complex networks: Structure and dynamics, Physics Reports, 424 (2006), 175-308. doi: 10.1016/j.physrep.2005.10.009. [10] S. Boccaletti, A. N. Pisarchik, C. I. Del Genio and A. Amann, Synchronization: From Coupled Systems to Complex Networks, Cambridge University Press, 2018. doi: 10.1017/9781107297111. [11] S. Boccaletti and D. L. Valladares, Characterization of intermittent lag synchronization, Physical Review E, 62 (2000), 7497. doi: 10.1103/PhysRevE.62.7497. [12] S. Borovkova, R. Burton and H. Dehling, Limit theorems for functionals of mixing processes with applications to u-statistics and dimension estimation, Transactions of the American Mathematical Society, 353 (2001), 4261-4318. doi: 10.1090/S0002-9947-01-02819-7. [13] J. Bragard, G. Vidal, H. Mancini, C. Mendoza and S. Boccaletti, Chaos suppression through asymmetric coupling, Chaos: An Interdisciplinary Journal of Nonlinear Science, 17 (2007), 043107. doi: 10.1063/1.2797378. [14] R. C. Budzinski, B. R. R. Boaretto, T. L. Prado, R. L. Viana and S. R. Lopes, Synchronous patterns and intermittency in a network induced by the rewiring of connections and coupling, Chaos: An Interdisciplinary Journal of Nonlinear Science, 29 (2019), 123132. doi: 10.1063/1.5128495. [15] R. C. Budzinski, Synchronization Properties, Malleability of Synchronization, and Nonstationary States in Neural Networks, PhD thesis, Universidade Federal do Paraná, 3 2021. [16] C.-U. Choe, K. Höhne, H. Benner and Y. S. Kivshar, Chaos suppression in the parametrically driven lorenz system, Physical Review E, 72 (2005), 036206. doi: 10.1103/PhysRevE.72.036206. [17] N. Chopin, P. E. Jacob and O. Papaspiliopoulos, Smc2: An efficient algorithm for sequential analysis of state space models, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75 (2013), 397-426. doi: 10.1111/j.1467-9868.2012.01046.x. [18] I. G. Da Silva, S. De Monte, F. d'Ovidio, R. Toral and C. Mirasso, Coherent regimes of mutually coupled chua's circuits, Physical Review E, 73 (2006), 036203. doi: 10.1103/PhysRevE.73.036203. [19] C. I. Del Genio, J. Gómez-Gardeñes, I. Bonamassa and S. Boccaletti, Synchronization in networks with multiple interaction layers, Science Advances, 2 (2016), e1601679. doi: 10.1126/sciadv.1601679. [20] P. Del Moral, A. Doucet and A. Jasra, Sequential monte carlo samplers, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68 (2006), 411-436. doi: 10.1111/j.1467-9868.2006.00553.x. [21] T. Dickhaus, Some extensions, In Theory of Nonparametric Tests, Springer, 2018,119-126. doi: 10.1007/978-3-319-76315-6. [22] M. D. Donsker, Justification and extension of doob's heuristic approach to the kolmogorov-smirnov theorems, The Annals of Mathematical Statistics, 23 (1952), 277-281. doi: 10.1214/aoms/1177729445. [23] J. L. Doob, Stochastic Processes, volume 10. New York Wiley, 1953. [24] F. Dörfler and F. Bullo, On the critical coupling for kuramoto oscillators, SIAM Journal on Applied Dynamical Systems, 10 (2011), 1070-1099. doi: 10.1137/10081530X. [25] J.-P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors, In The Theory of Chaotic Attractors, Springer, 1985,273-312. doi: 10.1007/978-0-387-21830-4_17. [26] D. Eroglu, J. S. Lamb and T. Pereira, Synchronisation of chaos and its applications, Contemporary Physics, 58 (2017), 207-243. doi: 10.1080/00107514.2017.1345844. [27] R. Femat, J. Alvarez-Ramirez, B. Castillo-Toledo and J. Gonzalez, On robust chaos suppression in a class of nondriven oscillators: Application to the chua's circuit, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 46 (1999), 1150-1152. doi: 10.1109/81.788818. [28] H. Fujisaka and T. Yamada, Stability theory of synchronized motion in coupled-oscillator systems, Progress of Theoretical Physics, 69 (1983), 32-47. doi: 10.1143/PTP.69.32. [29] H. Haario, L. Kalachev and J. Hakkarainen, Generalized correlation integral vectors: A distance concept for chaotic dynamical systems, Chaos: An Interdisciplinary Journal of Nonlinear Science, 25 (2015), 063102. doi: 10.1063/1.4921939. [30] H. Haario, M. Laine, A. Mira and E. Saksman, Dram: Efficient adaptive mcmc, Statistics and Computing, 16 (2006), 339-354. doi: 10.1007/s11222-006-9438-0. [31] H. Haario, E. Saksman and J. Tamminen, An adaptive metropolis algorithm, Bernoulli, 7 (2001), 223-242. doi: 10.2307/3318737. [32] H. Haken, At least one lyapunov exponent vanishes if the trajectory of an attractor does not contain a fixed point, Physics Letters A, 94 (1983), 71-72. doi: 10.1016/0375-9601(83)90209-8. [33] J. Hakkarainen, A. Ilin, A. Solonen, M. Laine, H. Haario, J. Tamminen, E. Oja and H. Järvinen, On closure parameter estimation in chaotic systems, Nonlinear Processes in Geophysics, 19 (2012), 127-143. doi: 10.5194/npg-19-127-2012. [34] J. F. Heagy, T. L. Carroll and L. M. Pecora, Synchronous chaos in coupled oscillator systems, Physical Review E, 50 (1994), 1874. doi: 10.1103/PhysRevE.50.1874. [35] J. F. Heagy, T. L. Carroll and L. M. Pecora, Desynchronization by periodic orbits, Physical Review E, 52 (19952), R1253. doi: 10.1103/PhysRevE.52.R1253. [36] K. Ibrahim, R. Jamal and F. Ali, Chaotic behaviour of the rossler model and its analysis by using bifurcations of limit cycles and chaotic attractors, In Journal of Physics: Conference Series, volume 1003, page 012099. IOP Publishing, 2018. doi: 10.1088/1742-6596/1003/1/012099. [37] R. Jaimes-Reátegui, R. Sevilla-Escoboza, A. N. Pisarchik, J. H. García-López, G. Huerta-Cuellar, F. Ruiz-Oliveras, D. L. Mancilla and C. Castañeda-Hernandez, Secure optoelectronic communication using laser diode driving by chaotic rössler oscillators, Journal of Physics: Conference Series, 274 (2011), 012024. doi: 10.1088/1742-6596/274/1/012024. [38] N. Kantas, A. Doucet, S. S. Singh, J. Maciejowski and N. Chopin, On particle methods for parameter estimation in state-space models, Statistical Science, 30 (2015), 328-351. doi: 10.1214/14-STS511. [39] A. Kazarnikov and H. Haario, Statistical approach for parameter identification by turing patterns, Journal of Theoretical Biology, 501 (2020), 110319. doi: 10.1016/j.jtbi.2020.110319. [40] M. Kostuk, B. A. Toth, C. D. Meliza, D. Margoliash and H. D. I. Abarbanel, Dynamical estimation of neuron and network properties ii: Path integral monte carlo methods, Biological Cybernetics, 106 (2012), 155-167. doi: 10.1007/s00422-012-0487-5. [41] A. Krakovská, Correlation dimension detects causal links in coupled dynamical systems, Entropy, 21 (2019), 818. doi: 10.3390/e21090818. [42] Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, Courier Corporation, 2003. doi: 10.1007/978-3-642-69689-3. [43] N. Lahav, I. Sendina-Nadal, C. Hens, B. Ksherim, B. Barzel, R. Cohen and S. Boccaletti, Synchronization of chaotic systems: A microscopic description, Physical Review E, 98 (2018), 052204. doi: 10.1103/PhysRevE.98.052204. [44] Z. Li, D. Cui and X. Li, Unbiased and robust quantification of synchronization between spikes and local field potential, Journal of Neuroscience Methods, 269 (2016), 33-38. doi: 10.1016/j.jneumeth.2016.05.004. [45] R. Maraia, S. Springer, H. Haario, J. Hakkarainen and E. Saksman, Parameter estimation of stochastic chaotic systems, International Journal for Uncertainty Quantification, 11 (2021), 49-62. doi: 10.1615/Int.J.UncertaintyQuantification.2020032807. [46] N. Neumeyer, A central limit theorem for two-sample u-processes, Statistics & Probability Letters, 67 (2004), 73-85. doi: 10.1016/j.spl.2002.12.001. [47] L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett., 64 (1990), 821-824. doi: 10.1103/PhysRevLett.64.821. [48] A. Pikovsky, M. Rosenblum and J. Kurths, Synchronization: A Universal Concept in Nonlinear Science, Cambridge Nonlinear Science Series, 12. Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511755743. [49] L. F. Price, C. C. Drovandi, A. Lee and D. J. Nott, Bayesian synthetic likelihood, Journal of Computational and Graphical Statistics, 27 (2018), 1-11. doi: 10.1080/10618600.2017.1302882. [50] K. Pyragas, Weak and strong synchronization of chaos, Physical Review E, 54 (1996), R4508. doi: 10.1063/1.54216. [51] K. Pyragas, Conditional lyapunov exponents from time series, Physical Review E, 56 (1997), 5183. doi: 10.1103/PhysRevE.56.5183. [52] J. C. Quinn, P. H. Bryant, D. R. Creveling, S. R. Klein and H. D. I. Abarbanel, Parameter and state estimation of experimental chaotic systems using synchronization, Physical Review E, 80 (2009), 016201. doi: 10.1103/PhysRevE.80.016201. [53] R. Q. Quiroga, J. Arnhold and P. Grassberger, Learning driver-response relationships from synchronization patterns, Physical Review E, 61 (2000), 5142. doi: 10.1103/PhysRevE.61.5142. [54] F. A. Rodrigues, T. K. DM. Peron, P. Ji and J. Kurths, The kuramoto model in complex networks, Physics Reports, 610 (2016), 1-98. doi: 10.1016/j.physrep.2015.10.008. [55] M. C. Romano, M. Thiel, J. Kurths and C. Grebogi, Estimation of the direction of the coupling by conditional probabilities of recurrence, Physical Review E, 76 (2007), 036211. doi: 10.1103/PhysRevE.76.036211. [56] M. Rosenblum, A. Pikovsky, J. Kurths, C. Schäfer and P. A. Tass, Phase synchronization: From theory to data analysis, Handbook of Biological Physics, 4 (2001), 279-321. doi: 10.1016/S1383-8121(01)80012-9. [57] M. G. Rosenblum, A. S. Pikovsky and J. Kurths, Phase synchronization of chaotic oscillators, Physical Review Letters, 76 (1996), 1804. doi: 10.1103/PhysRevLett.76.1804. [58] M. G. Rosenblum, A. S. Pikovsky and J. Kurths, From phase to lag synchronization in coupled chaotic oscillators, Physical Review Letters, 78 (1997), 4193. doi: 10.1103/PhysRevLett.78.4193. [59] O. E. Rössler, An equation for continuous chaos, Phys. Lett. A, 57 (1976), 397-398. doi: 10.1016/0375-9601(76)90101-8. [60] N. F. Rulkov, M. M. Sushchik, L. S. Tsimring and H. D. Abarbanel, Generalized synchronization of chaos in directionally coupled chaotic systems, Physical Review E, 51 (1995), 980. doi: 10.1103/PhysRevE.51.980. [61] S. Särkkä, Bayesian Filtering and Smoothing, Number 3. Cambridge university press, 2013. doi: 10.1017/CBO9781139344203. [62] S. Springer, H. Haario, V. Shemyakin, L. Kalachev and D. Shchepakin, Robust parameter estimation of chaotic systems, Inverse Problems & Imaging, 13 (2019), 1189-1212. doi: 10.3934/ipi.2019053. [63] S. Springer, H. Haario, J. Susiluoto, A. Bibov, A. Davis and Y. Marzouk, Efficient bayesian inference for large chaotic dynamical systems, Geoscientific Model Development, 14 (2021), 4319-4333. doi: 10.5194/gmd-14-4319-2021. [64] C. J. Stam and B. W. Van Dijk, Synchronization likelihood: An unbiased measure of generalized synchronization in multivariate data sets, Physica D: Nonlinear Phenomena, 163 (2002), 236-251. doi: 10.1016/S0167-2789(01)00386-4. [65] T. Stankovski, T. Pereira, P. V. E. McClintock and A. Stefanovska, Coupling functions: Universal insights into dynamical interaction mechanisms, Reviews of Modern Physics, 89 (2017), 045001. doi: 10.1103/RevModPhys.89.045001. [66] S. Strogatz, Sync: The Emerging Science of Spontaneous Order, Penguin UK, 2004. [67] S. H. Strogatz, From kuramoto to crawford: Exploring the onset of synchronization in populations of coupled oscillators, Physica D: Nonlinear Phenomena, 143 (2000), 1-20. doi: 10.1016/S0167-2789(00)00094-4. [68] S. H. Strogatz, Exploring complex networks, Nature, 410 (2001), 268-276. doi: 10.1038/35065725. [69] S. H. Strogatz and I. Stewart, Coupled oscillators and biological synchronization, Scientific American, 269 (1993), 102-109. doi: 10.1038/scientificamerican1293-102. [70] A. B. Vasil'eva, V. F. Butuzov and L. V. Kalachev, The Boundary Function Method for Singular Perturbed Problems, volume 14. SIAM, 1995. doi: 10.1137/1.9781611970784. [71] S. N. Wood, Statistical inference for noisy nonlinear ecological dynamic systems, Nature, 466 (2010), 1102-1104. doi: 10.1038/nature09319. [72] L. Yin, G. Zhang and F. Yin, Measuring synchronization between spikes and local field potential based on the kullback–leibler divergence, Computational Intelligence and Neuroscience, 2021 (2021), Article ID 9954302. doi: 10.1155/2021/9954302. [73] C. Zhou and C.-H. Lai, Robustness of supersensitivity to small signals in nonlinear dynamical systems, Physical Review E, 59 (1999), R6243. doi: 10.1103/PhysRevE.59.R6243. [74] Y. Zou, R. V. Donner, N. Marwan, J. F. Donges and J. Kurths, Complex network approaches to nonlinear time series analysis, Physics Reports, 787 (2019), 1-97. doi: 10.1016/j.physrep.2018.10.005.
RetroSearch is an open source project built by @garambo
| Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4