The sources and sinks of important climatic trace gases such as carbon dioxide (CO2) are often deduced from spatial and temporal variations in atmospheric concentrations. Reducing uncertainties in our understanding of the contemporary carbon budget and its underlying dynamics, however, requires significantly denser observations globally than is practical with in situ measurements. Space-based measurements appear technically feasible but require innovations in data analysis approaches. We develop a variational data assimilation scheme to estimate surface CO2 fluxes at fine time/space scales from such dense atmospheric data. Global flux estimates at a daily time step and model-grid spatial resolution (4° × 5° here) are rapidly achieved after only a few dozen minimization steps. We quantify the flux errors from existing, planned and hypothetical surface and space-borne observing systems. Simulations show that the planned NASA Orbital Carbon Observatory (OCO) satellite should provide significant additional information beyond that from existing and proposed in situ observations. Improvements in data assimilation techniques and in mechanistic process models are both needed to fully exploit the emerging global carbon observing system.
Submitted on Jan 13, 2006
Accepted on Jun 26, 2006
Published on Jan 1, 2006
ReferencesBaker , D. E 2001 . Sources and Sinks of Atmospheric CO2 Esti-mated from Batch Least Squares Inversions of CO2 Concentration Measurements, PhD dissertation, 414 pp ., Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey , January .
Baker , D. F. , Law , R. M. , Gurney , K. R. , Rayner , P. , Peylin , P. and co-authors. 2006. TransCom3 inversion intercomparison: Impact of transport model errors on the interannual variability of regional CO2 fluxes, 1988-2003. Global Biogeochem. Cycles. 20, GB1002, https://doi.org/10.1029/2004GB002439 .
Bennett , A. F . 2002 . Inverse Modeling of the Ocean and Atmosphere , Cambridge University Press , Cambridge , 234 pp .
Bousquet , R , Peylin , P. , Ciais , P. , Le Quere , C. , Friedlingstein , P. and co-authors . 2000. Regional changes in carbon dioxide fluxes of land and oceans since 1980. Science . 290 , 1342 – 1346 .
Braswell , B. H. , Sacks , W. J. , Linder , E. and Schimel , D. S . 2005 . Es-timating diurnal to annual ecosystem parameters by synthesis of a carbon flux model with eddy covariance net ecosystem exchange ob-servations . Global Change Biol . 11 , 335 – 355 , https://doi.org/10.1111/j.1365-2486.2005.00897.x .
Bruhwiler , L. M. P. , Michalak , A. M. , Peters , W. , Baker , D. F. and Tans , P . 2005. An improved Kalman Smoother for atmospheric inversions. Atmos. Chem. Phys. 5, 2691-2702, SRef-ID: 1680-7324/acp/2005-5-2691.
Bryson , A. E. and Ho , Y.-C . 1975 . Applied Optimal Control . Hemisphere Publ. Co ., New York , 481 pp .
Buchwitz , M. , de Beek , R. , Burrows , J. P. , Bovensmann , H. , Warneke , T. and co-authors. 2005. Atmospheric methane and carbon dioxide from SCIAMACHY satellite data: initial comparison with chemistry and transport models. Atmos. Chem. Phys. 5, 941 – 962.
Chedin , A. , Serrar , S. , Scott , N. A. , Crevoisier , C. and Armante , R . 2003 . First global measurement of midtropospheric CO2 from NOAA polar satellites: tropical zone . J. Geophys. Res., Atmos . 108 ( D18 ), 4581 https://doi.org/10.1029/2003JD003439 .
Crevoisier , C. , Heilliette , S. , Chedin , A. , Serrar , S. , Armante , R. and Scott , N. A . 2004 . Midtropospheric CO2 concentration retrieval from AIRS observations in the tropics . Geophys. Res. Lett . 31 ( 17 ), L17106 , https://doi.org/10.1029/2004GL020141 .
Crisp , D. , Atlas , R. M. , Breon , F.-M. , Brown , L. R. , Burrows , J. P. and co-authors. 2004. The Orbiting Carbon Observatory (OCO) Mission. Adv. Space Res. 34, 700 – 709.
Deeter , M. N. , Emmons , L. K. , Francis , G. L. , Edwards , D. R , Gille , J. C. and co-authors. 2003. Operational carbon monoxide retrieval algorithm and selected results for the MOPITT instrument. J. Geophys. Res . 108 ( D14 ), 4399, https://doi.org/10.1029/2002JD003186 .
Dilling , L. , Doney , S. C. , Edmonds , J. , Gurney , K. R. , Harriss , R. and co-authors. 2003. The role of carbon cycle observations and knowledge in carbon management. Ann. Rev. Environ. Resour 28, https://doi.org/10.1146/annurev.energy.28.011503.163443 , 521 - 558 .
Doney , S. C. , Lindsay , K. , Caldeira , K. , Campin , J.-M. , Drange , H. and co-authors. 2004. Evaluating global ocean carbon models: the impor-tance of realistic physics. Global Biogeochem. Cycles. 18, GB3017, https://doi.org/10.1029/2003GB002150 .
Enting , I . 2002 . Inverse Problems in Atmospheric Constituent Transport , Cambridge Univ. Press , Cambridge , UK , 392 pp .
Errico , R. M . 1997 . What is an adjoint model? Bull. Am. MeteroL Soc . 78 , 2577 – 2591 .
Frankenberg , C. , Meirinlc , J. F. , van Weele , M. , Platt , U. and Wagner , T . 2005 . Assessing methane emissions from global space-borne obser-vations . Science . 308 ( 5724 ), 1010 – 1014 .
Geels , C. , Doney , S. C. , Dargaville , R. , Brandt , J. and Christensen , J. H . 2004 . Investigating the sources of synoptic variability in atmospheric CO2 measurements over the Northern Hemisphere continents: a re-gional model study . Tellus . 56B , 35 – 50 .
GLOBALVIEW-CO 2 2004. Cooperative Atmospheric Data Integra-tion Project—Carbon Dioxide. CD-ROM, NOAA CMDL, Boul-der, Colorado [Also available on Internet via anonymous FTP to ftp.cmdl.noaa.gov, Path: ccg/co2/GLOBALVIEW].
Houweling , S. , Breon , F.-M. , Aben , I. , Rödenbeck , C. , Heimann , M. and co-authors. 2004. Inverse modelling of CO2 sources and sinks using satellite data: a synthetic inter-comparison of measurement techniques and their performance as a function of space and time. Atmos. Chem. Phys. 4, 523 – 538.
Kaminski , T. , Heimann , M. and Giering , R . 1999a . A coarse grid three-dimensional global inverse model of the atmospheric transport, 1: adjoint model and Jacobian matrix . J. Geophys. Res . 104 , 18535-18 553 .
Kaminski , T. , Heimann , M. and Giering , R . 1999b. A coarse grid three-dimensional global inverse model of the atmospheric transport, 2: inversion of the transport of CO2 in the 1980s. J. Geophys. Res . 104 , 18555 – 18581.
Kama , S. R. , Erickson , D. J. , Pawson , S. and Zhu , Z . 2004 . Global CO2 transport simulations using meteorological data from the NASA data assimilation system . J. Geophys. Res.-Atmos . 109 ( D18 ), D18312 , https://doi.org/10.1029/2004JD004554 .
Peters W. , Miller , J. B. , Whitaker , J. , Denning , A. S. , Hirsch , A. and co-authors. 2005. An ensemble data assimilation system to estimate CO2 surface fluxes from atmospheric trace gas observations. J. Geophys. Res . 110 (D24), Art. No. D24304.
Peylin , P. , Rayner , P. J. , Bousquet , P. , Carouge , C. , Hourdin , F. and co-authors. 2005. Daily CO2 flux estimates over Europe from con-tinuous atmospheric measurements. 1: inverse methodology. Atmos. Chem. Phys. Discuss. 5, 1647-1678, SRef-ID: 1680-7375/acpd/2005-5-1647.
Randerson , J. T. , Thompson , M. V , Conway , T. J. , Fung , I. Y. and Field , C. B . 1997 . The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide . Global Biogeochem. Cycles . 11 , 535 – 560 .
Rayner , P. J. and O'Brien , D . 2001 . The utility of remotely sensed CO2 concentration data in surface source inversions . Geophys. Res. Lett . 28 , 175 – 178 .
Rayner , P. J. , Scholze , M. , Knorr , W. , Kaminski , T. , Giering , R. and co-authors. 2005. Two decades of terrestrial carbon fluxes from a carbon cycle data assimilation system (CCDAS), Global Biogeochem. Cycles. 19, GB2026, https://doi.org/10.1029/2004GB002254 .
Rödenbeck , C. , Houweling , S. , Gloor , M. and Heimann , M . 2003. CO2 flux history 1982-2001 inferred from atmospheric data using a global inversion of atmospheric transport . Atmos. Chem. Phys . 3 , 1919– 1964 .
Rödenbeck , C . 2005. Estimating CO2 sources and sinks from atmo-spheric mixing ratio measurements using a global inversion of atmo-spheric transport. Max-Planck-Institut fiir Biogeochemie: Technical Paper 6.
Sitch , S. , Smith , B. , Prentice , I. C. , Arneth , A. , Bondeau , A. and co-authors 2003. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biol. 9 ( 2 ), 161 – 185.
Stoer , J. and Bulirsch , R . 1980 . Introduction to Numerical Analysis , Springer-Verlag , New York , 609 pp .
Takahashi , T. , Wanninlchof , R. H. , Feely , R. A. , Weiss , R. F. , Chipman , D. W. and co-authors. 1999. Net sea-air CO2 flux over the global oceans: an improved estimate based on the sea-air pCO2 difference, Proceed-ings of the 2nd International Symposium: CO2 in the Oceans, the 12th Global Environmental Tsukuba, 18-22 January 1999, Tsukuba Center of Institutes, (ed.Y. Nojiri). Natl. Inst. for Environ. Studies, Environ. Agency of Japan.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.3