* Corresponding authors
a Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 2, 35032 Marburg, Germany
b Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Spain
E-mail: frenking@chemie.uni-marburg.de
Quantum chemical calculations of the compound B2(NHCMe)2 and a thorough examination of the electronic structure with an energy decomposition analysis provide strong evidence for the appearance of boron–boron triple bond character. This holds for the model compound and for the isolated diboryne B2(NHCR)2 of Braunschweig which has an even slightly shorter B–B bond. The bonding situation in the molecule is best described in terms of NHCMe→B2←NHCMe donor–acceptor interactions and concomitant π-backdonation NHCMe←B2→NHCMe which weakens the B–B bond, but the essential features of a triple bond are preserved. An appropriate formula which depicts both interactions is the sketch NHCMe⇄BB⇄NHCMe. Calculations of the stretching force constants FBB which take molecules that have genuine single, double and triple bonds as references suggest that the effective bond order of B2(NHCMe)2 has the value of 2.34. The suggestion by Köppe and Schnöckel that the strength of the boron–boron bond in B2(NHCH)2 is only between a single and a double bond is repudiated. It misleadingly takes the force constant FBB of OBBO as the reference value for a B–B single bond which ignores π bonding contributions. The alleged similarity between the B–O bonds in OBBO and the B–C bonds in B2(NHCMe)2 is a mistaken application of the principle of isolable relationship.
This article is Open Access
Please wait while we load your content... Something went wrong. Try again? Supplementary files Article informationAll publication charges for this article have been paid for by the Royal Society of Chemistry
Chem. Sci., 2015,6, 4089-4094
N. Holzmann, M. Hermann and G. Frenking, Chem. Sci., 2015, 6, 4089 DOI: 10.1039/C5SC01504A
This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.
To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.
If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.
If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.
Read more about how to correctly acknowledge RSC content.
Fetching data from CrossRef.
This may take some time to load.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4