A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://doi.org/10.1038/s41586-021-04092-z below:

Deep-mantle krypton reveals Earth’s early accretion of carbonaceous matter

  • Fischer-Gödde, M. et al. Ruthenium isotope vestige of Earth’s pre-late-veneer mantle preserved in Archaean rocks. Nature 579, 240–244 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Albarède, F. Volatile accretion history of the terrestrial planets and dynamic implications. Nature 461, 1227–1233 (2009).

    Article  ADS  PubMed  Google Scholar 

  • Mukhopadhyay, S. & Parai, R. Noble gases: a record of Earth’s evolution and mantle dynamics. Annu. Rev. Earth Planet. Sci. 47, 389–419 (2019).

    Article  ADS  CAS  Google Scholar 

  • Moreira, M. Noble gas constraints on the origin and evolution of Earth’s volatiles. Geochem. Perspect. 2, 229–403 (2013).

    Article  Google Scholar 

  • Clay, P. L. et al. Halogens in chondritic meteorites and terrestrial accretion. Nature 551, 614–618 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Ozima, M. & Zashu, S. Solar-type Ne in Zaire cubic diamonds. Geochim. Cosmochim. Acta 52, 19–25 (1988).

    Article  ADS  CAS  Google Scholar 

  • Ozima, M. & Zashu, S. Noble gas state of the ancient mantle as deduced from noble gases in coated diamonds. Earth Planet. Sci. Lett. 105, 13–27 (1991).

    Article  ADS  CAS  Google Scholar 

  • Péron, S. & Moreira, M. Onset of volatile recycling into the mantle determined by xenon anomalies. Geochem. Perspect. Lett. 9, 21–25 (2018).

    Article  Google Scholar 

  • Holland, G., Cassidy, M. & Ballentine, C. J. Meteorite Kr in Earth’s mantle suggests a late accretionary source for the atmosphere. Science 326, 1522–1525 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Broadley, M. W. et al. Identification of chondritic krypton and xenon in Yellowstone gases and the timing of terrestrial volatile accretion. Proc. Natl Acad. Sci. USA 117, 13997–14004 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Péron, S. et al. Neon isotopic composition of the mantle constrained by single vesicle analyses. Earth Planet. Sci. Lett. 449, 145–154 (2016).

    Article  ADS  Google Scholar 

  • Mundl-Petermeier, A. et al. Anomalous 182W in high 3He/4He ocean island basalts: fingerprints of Earth’s core? Geochim. Cosmochim. Acta 271, 194–211 (2020).

    Article  ADS  CAS  Google Scholar 

  • Kurz, M. D., Curtice, J., Fornari, D., Geist, D. & Moreira, M. Primitive neon from the center of the Galapagos hotspot. Earth Planet. Sci. Lett. 286, 23–34 (2009).

    Article  ADS  CAS  Google Scholar 

  • Mukhopadhyay, S. Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature 486, 101–104 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Trieloff, M., Kunz, J., Clague, D. A., Harrison, D. & Allègre, C. J. The nature of pristine noble gases in mantle plumes. Science 288, 1036–1038 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Harrison, D., Burnard, P. & Turner, G. Noble gas behaviour and composition in the mantle: constraints from the Iceland Plume. Earth Planet. Sci. Lett. 171, 199–207 (1999).

    Article  ADS  CAS  Google Scholar 

  • Render, J., Fischer-Gödde, M., Burkhardt, C. & Kleine, T. The cosmic molybdenum–neodymium isotope correlation and the building material of the Earth. Geochem. Perspect. Lett. 3, 170–178 (2017).

    Article  Google Scholar 

  • Akram, W., Schönbächler, M., Bisterzo, S. & Gallino, R. Zirconium isotope evidence for the heterogeneous distribution of s-process materials in the Solar System. Geochim. Cosmochim. Acta 165, 484–500 (2015).

    Article  ADS  CAS  Google Scholar 

  • Hirschmann, M. M. & Dasgupta, R. The H/C ratios of Earth’s near-surface and deep reservoirs, and consequences for deep Earth volatile cycles. Chem. Geol. 262, 4–16 (2009).

    Article  ADS  CAS  Google Scholar 

  • Marty, B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313–314, 56–66 (2012).

    Article  ADS  Google Scholar 

  • Marty, B. et al. Xenon isotopes in 67P/Churyumov–Gerasimenko show that comets contributed to Earth’s atmosphere. Science 356, 1069–1072 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Harper, C. L. & Jacobsen, S. B. Noble gases and Earth’s accretion. Science 273, 1814–1818 (1996).

    Article  ADS  CAS  Google Scholar 

  • O’Brien, D. P., Walsh, K. J., Morbidelli, A., Raymond, S. N. & Mandell, A. M. Water delivery and giant impacts in the ‘grand tack’ scenario. Icarus 239, 74–84 (2014).

    Article  ADS  Google Scholar 

  • Meshik, A., Hohenberg, C., Pravdivtseva, O. & Burnett, D. Heavy noble gases in solar wind delivered by Genesis mission. Geochim. Cosmochim. Acta 127, 326–347 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Busemann, H., Baur, H. & Wieler, R. Primordial noble gases in ‘Phase Q’ in carbonaceous and ordinary chondrites studied by closed-system stepped etching. Meteorit. Planet. Sci. 35, 949–973 (2000).

    Article  ADS  CAS  Google Scholar 

  • Williams, C. D. & Mukhopadhyay, S. Capture of nebular gases during Earth’s accretion is preserved in deep-mantle neon. Nature 565, 78–81 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Yokochi, R. & Marty, B. A determination of the neon isotopic composition of the deep mantle. Earth Planet. Sci. Lett. 225, 77–88 (2004).

    Article  ADS  CAS  Google Scholar 

  • French, S. W. & Romanowicz, B. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature 525, 95–99 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Ballentine, C. J. & Barfod, D. N. The origin of air-like noble gases in MORB and OIB. Earth Planet. Sci. Lett. 180, 39–48 (2000).

    Article  ADS  CAS  Google Scholar 

  • Caffee, M. W. et al. Primordial noble gases from Earth’s mantle: identification of primitive volatile component. Science 285, 2115–2118 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Holland, G. & Ballentine, C. J. Seawater subduction controls the heavy noble gas composition of the mantle. Nature 441, 186–191 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Bekaert, D. V., Broadley, M. W., Caracausi, A. & Marty, B. Novel insights into the degassing history of Earth’s mantle from high precision noble gas analysis of magmatic gas. Earth Planet. Sci. Lett. 525, 115766 (2019).

    Article  CAS  Google Scholar 

  • Parai, R. & Mukhopadhyay, S. The evolution of MORB and plume mantle volatile budgets: constraints from fission Xe isotopes in Southwest Indian Ridge basalts. Geochem. Geophys. Geosyst. 16, 719–735 (2015).

    Article  ADS  CAS  Google Scholar 

  • Busemann, H. & Eugster, O. The trapped noble gas component in achondrites. Meteorit. Planet. Sci. 37, 1865–1891 (2002).

    Article  ADS  CAS  Google Scholar 

  • Broadley, M. W., Bekaert, D. V., Marty, B., Yamaguchi, A. & Barrat, J.-A. Noble gas variations in ureilites and their implications for ureilite parent body formation. Geochim. Cosmochim. Acta 270, 325–337 (2020).

    Article  ADS  CAS  Google Scholar 

  • Pető, M. K., Mukhopadhyay, S. & Kelley, K. A. Heterogeneities from the first 100 million years recorded in deep mantle noble gases from the Northern Lau Back-arc Basin. Earth Planet. Sci. Lett. 369–370, 13–23 (2013).

    Article  ADS  Google Scholar 

  • Ott, U., Begemann, F., Yang, J. & Epstein, S. S-process krypton of variable isotopic composition in the Murchison meteorite. Nature 332, 700–702 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Lewis, R. S., Amari, S. & Anders, E. Interstellar grains in meteorites: II. SiC and its noble gases. Geochim. Cosmochim. Acta 58, 471–494 (1994).

    Article  ADS  CAS  Google Scholar 

  • Dauphas, N. The isotopic nature of the Earth’s accreting material through time. Nature 541, 521–524 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Pepin, R. O. & Porcelli, D. Xenon isotope systematics, giant impacts, and mantle degassing on the early Earth. Earth Planet. Sci. Lett. 250, 470–485 (2006).

    Article  ADS  CAS  Google Scholar 

  • Pepin, R. O. On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. Icarus 92, 2–79 (1991).

    Article  ADS  CAS  Google Scholar 

  • Carlson, R. W. et al. How did early Earth become our modern world? Annu. Rev. Earth Planet. Sci. 42, 151–178 (2014).

    Article  ADS  CAS  Google Scholar 

  • Rubin, M. et al. Krypton isotopes and noble gas abundances in the coma of comet 67P/Churyumov–Gerasimenko. Sci. Adv. 4, eaar6297 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Mazor, E., Heymann, D. & Anders, E. Noble gases in carbonaceous chondrites. Geochim. Cosmochim. Acta 34, 781–824 (1970).

    Article  ADS  CAS  Google Scholar 

  • Heber, V. S. et al. Noble gas composition of the solar wind as collected by the Genesis mission. Geochim. Cosmochim. Acta 73, 7414–7432 (2009).

    Article  ADS  CAS  Google Scholar 

  • Pahlevan, K. & Stevenson, D. J. Equilibration in the aftermath of the lunar-forming giant impact. Earth Planet. Sci. Lett. 262, 438–449 (2007).

    Article  ADS  CAS  Google Scholar 

  • Lock, S. J. & Stewart, S. T. The structure of terrestrial bodies: Impact heating, corotation limits, and synestias. J. Geophys. Res. Planets 122, 950–982 (2017).

    Article  ADS  Google Scholar 

  • Bekaert, D. V., Broadley, M. W. & Marty, B. The origin and fate of volatile elements on Earth revisited in light of noble gas data obtained from comet 67P/Churyumov–Gerasimenko. Sci. Rep. 10, 5796 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciesla, F. J. & Cuzzi, J. N. The evolution of the water distribution in a viscous protoplanetary disk. Icarus 181, 178–204 (2006).

    Article  ADS  Google Scholar 

  • Raymond, S. N. & Izidoro, A. Origin of water in the inner Solar System: planetesimals scattered inward during Jupiter and Saturn’s rapid gas accretion. Icarus 297, 134–148 (2017).

    Article  ADS  Google Scholar 

  • Geist, D. et al. Submarine Fernandina: magmatism at the leading edge of the Galapagos hot spot. Geochem. Geophys. Geosyst. 7, Q12007 (2006).

    Article  ADS  Google Scholar 

  • Peterson, M. E. et al. Submarine basaltic glasses from the Galapagos Archipelago: determining the volatile budget of the mantle plume. J. Petrol. 58, 1419–1450 (2017).

    Article  ADS  CAS  Google Scholar 

  • Graham, D. W., Hanan, B. B., Hémond, C., Blichert‐Toft, J. & Albarède, F. Helium isotopic textures in Earth’s upper mantle. Geochem. Geophys. Geosyst. 15, 2048–2074 (2014).

    Article  ADS  CAS  Google Scholar 

  • Colin, A., Moreira, M., Gautheron, C. & Burnard, P. Constraints on the noble gas composition of the deep mantle by bubble-by-bubble analysis of a volcanic glass sample from Iceland. Chem. Geol. 417, 173–183 (2015).

    Article  ADS  CAS  Google Scholar 

  • Péron, S., Mukhopadhyay, S. & Huh, M. A new dual stainless steel cryogenic trap for efficient separation of krypton from argon and xenon. J. Analyt. At. Spectrom. 35, 2663–2671 (2020).

    Article  Google Scholar 

  • Lott, D. E. III Improvements in noble gas separation methodology: a nude cryogenic trap. Geochem. Geophys. Geosyst. 2, 1068 (2001).

    Article  ADS  Google Scholar 

  • Stanley, R. H. R., Baschek, B., Lott, D. E. III & Jenkins, W. J. A new automated method for measuring noble gases and their isotopic ratios in water samples. Geochem. Geophys. Geosyst. 10, Q05008 (2009).

    Article  ADS  Google Scholar 

  • Kunz, J., Staudacher, T. & Allègre, C. J. Plutonium-fission xenon found in Earth’s mantle. Science 280, 877–880 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Moreira, M., Kunz, J. & Allègre, C. J. Rare gas systematics on popping rock: estimates of isotopic and elemental compositions in the upper mantle. Science 279, 1178–1181 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Parai, R. & Mukhopadhyay, S. Heavy noble gas signatures of the North Atlantic Popping Rock 2ΠD43: implications for mantle noble gas heterogeneity. Geochim. Cosmochim. Acta 294, 89–105 (2021).

    Article  ADS  CAS  Google Scholar 

  • Tucker, J. M., Mukhopadhyay, S. & Schilling, J.-G. The heavy noble gas composition of the depleted MORB mantle (DMM) and its implications for the preservation of heterogeneities in the mantle. Earth Planet. Sci. Lett. 355–356, 244–254 (2012).

    Article  ADS  Google Scholar 

  • Parai, R., Mukhopadhyay, S. & Standish, J. J. Heterogeneous upper mantle Ne, Ar and Xe isotopic compositions and a possible Dupal noble gas signature recorded in basalts from the Southwest Indian Ridge. Earth Planet. Sci. Lett. 359–360, 227–239 (2012).

    Article  ADS  Google Scholar 

  • Moreira, M., Rouchon, V., Muller, E. & Noirez, S. The xenon isotopic signature of the mantle beneath Massif Central. Geochem. Perspect. Lett. 6, 28–32 (2018).

    Article  Google Scholar 

  • Ozima, M. & Podosek, F. A. Noble Gas Geochemistry (Cambridge Univ. Press, 2002).

  • Huss, G. R. & Lewis, R. S. Presolar diamond, SiC, and graphite in primitive chondrites: abundances as a function of meteorite class and petrologic type. Geochim. Cosmochim. Acta 59, 115–160 (1995).

    Article  ADS  CAS  Google Scholar 

  • Pepin, R. O. On noble gas processing in the solar accretion disk. Space Sci. Rev. 106, 211–230 (2003).

    Article  ADS  CAS  Google Scholar 

  • Eugster, O., Eberhardt, P. & Geiss, J. Krypton and xenon isotopic composition in three carbonaceous chondrites. Earth Planet. Sci. Lett. 3, 249–257 (1967).

    Article  ADS  CAS  Google Scholar 

  • Marti, K. Isotopic composition of trapped krypton and xenon in chondrites. Earth Planet. Sci. Lett. 3, 243–248 (1967).

    Article  ADS  CAS  Google Scholar 

  • Manuel, O. K., Wright, R. J., Miller, D. K. & Kuroda, P. K. Heavy noble gases in Leoville: The case for mass fractionated xenon in carbonaceous chondrites. J. Geophys. Res. 75, 5693–5701 (1970).

    Article  ADS  Google Scholar 

  • Krummenacher, D., Merrihue, C. M., Pepin, R. O. & Reynolds, J. H. Meteoritic krypton and barium versus the general isotopic anomalies in meteoritic xenon. Geochim. Cosmochim. Acta 26, 231–249 (1962).

    Article  ADS  CAS  Google Scholar 

  • Manuel, O. K., Wright, R. J., Miller, D. K. & Kuroda, P. K. Isotopic compositions of rare gases in the carbonacaous chondrites Mokoia and Allende. Geochim. Cosmochim. Acta 36, 961–983 (1972).

    Article  ADS  CAS  Google Scholar 

  • Matsuda, J.-I., Lewis, R. S., Takahashi, H. & Anders, E. Isotopic anomalies of noble gases in meteorites and their origins—VII. C3V carbonaceous chondrites. Geochim. Cosmochim. Acta 44, 1861–1874 (1980).

    Article  ADS  CAS  Google Scholar 

  • Basford, J. R., Dragon, J. C., Pepin, R. O., Coscio, M. R. Jr & Murthy, V. R. Krypton and xenon in lunar fines. Lunar Planet. Sci. Proc. 4, 1915–1955 (1973).

    ADS  Google Scholar 

  • Nier, A. O. A redetermination of the relative abundances of the isotopes of neon, krypton, rubidium, xenon and mercury. Phys. Rev. 79, 450–454 (1950).

    Article  ADS  CAS  Google Scholar 

  • Nief, G. Isotopic Abundance Ratios Given for Reference Samples Stocked by the National Bureau of Standards (ed. Mohler, F.) NBS Technical Note 51 (National Bureau of Standards, 1960).

  • Eugster, O., Eberhardt, P. & Geiss, J. The isotopic composition of krypton in unequilibrated and gas rich chondrites. Earth Planet. Sci. Lett. 2, 385–393 (1967).

    Article  ADS  CAS  Google Scholar 

  • Marti, K., Eberhardt, P. & Geiss, J. Spallation, fission, and neutron capture anomalies in meteoritic krypton and xenon. Z. Naturforsch. A 21, 398–426 (1966).

    Article  ADS  CAS  Google Scholar 

  • Eugster, O. Cosmic-ray production rates for 3He, 21Ne, 38Ar, 83Kr, and 126Xe in chondrites based on 81Kr–Kr exposure ages. Geochim. Cosmochim. Acta 52, 1649–1662 (1988).

    Article  ADS  CAS  Google Scholar 

  • Wieler, R. Cosmic-ray-produced noble gases in meteorites. Rev. Mineral. Geochem. 47, 125–170 (2002).

    Article  CAS  Google Scholar 

  • Eugster, O., Eberhardt, P. & Geiss, J. Isotopic analyses of krypton and xenon in fourteen stone meteorites. J. Geophys. Res. 74, 3874–3896 (1969).

    Article  ADS  CAS  Google Scholar 

  • Nakashima, D. & Nakamura, T. Trapped noble gas components and exposure history of the enstatite chondrite ALH84206. Geochem. J. 40, 543–555 (2006).

    Article  ADS  CAS  Google Scholar 

  • Okazaki, R., Takaoka, N., Nagao, K. & Nakamura, T. Noble gases in enstatite chondrites released by stepped crushing and heating. Meteorit. Planet. Sci. 45, 339–360 (2010).

    Article  ADS  CAS  Google Scholar 

  • Heber, V. S. et al. Isotopic fractionation of solar wind: evidence from fast and slow solar wind collected by the Genesis Mission. Astrophys. J. 759, 121–133 (2012).

    Article  ADS  Google Scholar 

  • Pepin, R. O., Schlutter, D. J., Becker, R. H. & Reisenfeld, D. B. Helium, neon, and argon composition of the solar wind as recorded in gold and other Genesis collector materials. Geochim. Cosmochim. Acta 89, 62–80 (2012).

    Article  ADS  CAS  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4