A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://doi.org/10.1038/nsmb.2330 below:

Structural basis for heteromeric assembly and perinuclear organization of keratin filaments

  • Lazarides, E. Intermediate filaments as mechanical integrators of cellular space. Nature 283, 249–256 (1980).

    Article  CAS  Google Scholar 

  • Fuchs, E. & Cleveland, D.W. A structural scaffolding of intermediate filaments in health and disease. Science 279, 514–519 (1998).

    Article  CAS  Google Scholar 

  • Osborn, M. & Weber, K. Tumor diagnosis by intermediate filament typing: a novel tool for surgical pathology. Lab. Invest. 48, 372–394 (1983).

    CAS  PubMed  Google Scholar 

  • Omary, M.B., Coulombe, P.A. & McLean, W.H.I. Intermediate filament proteins and their associated diseases. N. Engl. J. Med. 351, 2087–2100 (2004).

    Article  CAS  Google Scholar 

  • Szeverenyi, I. et al. The Human Intermediate Filament Database: comprehensive information on a gene family involved in many human diseases. Hum. Mutat. 29, 351–360 (2008).

    Article  CAS  Google Scholar 

  • Kim, S. & Coulombe, P.A. Intermediate filament scaffolds fulfill mechanical, organizational, and signaling functions in the cytoplasm. Genes Dev. 21, 1581–1597 (2007).

    Article  CAS  Google Scholar 

  • Hanukoglu, I. & Fuchs, E. The cDNA sequence of a Type II cytoskeletal keratin reveals constant and variable structural domains among keratins. Cell 33, 915–924 (1983).

    Article  CAS  Google Scholar 

  • Kim, S., Wong, P. & Coulombe, P.A. A keratin cytoskeletal protein regulates protein synthesis and epithelial cell growth. Nature 441, 362–365 (2006).

    Article  CAS  Google Scholar 

  • Hatzfeld, M. & Weber, K. The coiled coil of in vitro assembled keratin filaments is a heterodimer of type I and II keratins: use of site-specific mutagenesis and recombinant protein expression. J. Cell Biol. 110, 1199–1210 (1990).

    Article  CAS  Google Scholar 

  • Strelkov, S.V. et al. Conserved segments 1A and 2B of the intermediate filament dimer: their atomic structures and role in filament assembly. EMBO J. 21, 1255–1266 (2002).

    Article  CAS  Google Scholar 

  • Steinert, P.M., Marekov, L.N., Fraser, R.D. & Parry, D.A. Keratin intermediate filament structure. Crosslinking studies yield quantitative information on molecular dimensions and mechanism of assembly. J. Mol. Biol. 230, 436–452 (1993).

    Article  CAS  Google Scholar 

  • Bernot, K.M., Lee, C.H. & Coulombe, P.A. A small surface hydrophobic stripe in the coiled-coil domain of type I keratins mediates tetramer stability. J. Cell Biol. 168, 965–974 (2005).

    Article  CAS  Google Scholar 

  • Franke, W.W. et al. Monoclonal cytokeratin antibody recognizing a heterotypic complex: immunological probing of conformational states of cytoskeletal proteins in filaments and in solution. Exp. Cell Res. 173, 17–37 (1987).

    Article  CAS  Google Scholar 

  • Aebi, U., Haner, M., Troncoso, J., Eichner, R. & Engel, A. Unifying principles in intermediate filament assembly. Protoplasma 145, 73–81 (1988).

    Article  Google Scholar 

  • Sokolova, A.V. et al. Monitoring intermediate filament assembly by small-angle x-ray scattering reveals the molecular architecture of assembly intermediates. Proc. Natl. Acad. Sci. USA 103, 16206–16211 (2006).

    Article  CAS  Google Scholar 

  • Goldie, K.N. et al. Dissecting the 3-D structure of vimentin intermediate filaments by cryo-electron tomography. J. Struct. Biol. 158, 378–385 (2007).

    Article  CAS  Google Scholar 

  • Strelkov, S.V. et al. Divide-and-conquer crystallographic approach towards an atomic structure of intermediate filaments. J. Mol. Biol. 306, 773–781 (2001).

    Article  CAS  Google Scholar 

  • Strelkov, S.V., Schumacher, J., Burkhard, P., Aebi, U. & Herrmann, H. Crystal structure of the human lamin A coil 2B dimer: implications for the head-to-tail association of nuclear lamins. J. Mol. Biol. 343, 1067–1080 (2004).

    Article  CAS  Google Scholar 

  • Krimm, I. et al. The Ig-like structure of the C-terminal domain of lamin A/C, mutated in muscular dystrophies, cardiomyopathy, and partial lipodystrophy. Structure 10, 811–823 (2002).

    Article  CAS  Google Scholar 

  • Dhe-Paganon, S., Werner, E.D., Chi, Y.I. & Shoelson, S.E. Structure of the globular tail of nuclear lamin. J. Biol. Chem. 277, 17381–17384 (2002).

    Article  CAS  Google Scholar 

  • Meier, M. et al. Vimentin coil 1A-A molecular switch involved in the initiation of filament elongation. J. Mol. Biol. 390, 245–261 (2009).

    Article  CAS  Google Scholar 

  • Nicolet, S., Herrmann, H., Aebi, U. & Strelkov, S.V. Atomic structure of vimentin coil 2. J. Struct. Biol. 170, 369–376 (2010).

    Article  CAS  Google Scholar 

  • Fuchs, E. Keratins and the skin. Annu. Rev. Cell Dev. Biol. 11, 123–153 (1995).

    Article  CAS  Google Scholar 

  • Moll, R., Franke, W.W., Schiller, D.L., Geiger, B. & Krepler, R. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31, 11–24 (1982).

    Article  CAS  Google Scholar 

  • Coulombe, P.A. & Fuchs, E. Elucidating the early stages of keratin filament assembly. J. Cell Biol. 111, 153–169 (1990).

    Article  CAS  Google Scholar 

  • Lee, C.H. & Coulombe, P.A. Self-organization of keratin intermediate filaments into cross-linked networks. J. Cell Biol. 186, 409–421 (2009).

    Article  CAS  Google Scholar 

  • Coulombe, P.A. et al. Point mutations in human keratin 14 genes of epidermolysis bullosa simplex patients: genetic and functional analyses. Cell 66, 1301–1311 (1991).

    Article  CAS  Google Scholar 

  • Coulombe, P.A., Kerns, M.L. & Fuchs, E. Epidermolysis bullosa simplex: a paradigm for disorders of tissue fragility. J. Clin. Invest. 119, 1784–1793 (2009).

    Article  CAS  Google Scholar 

  • Herrmann, H. & Aebi, U. Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular Scaffolds. Annu. Rev. Biochem. 73, 749–789 (2004).

    Article  CAS  Google Scholar 

  • Parry, D.A., Fraser, R.D. & Squire, J.M. Fifty years of coiled-coils and alpha-helical bundles: a close relationship between sequence and structure. J. Struct. Biol. 163, 258–269 (2008).

    Article  CAS  Google Scholar 

  • Vinson, C., Acharya, A. & Taparowsky, E.J. Deciphering B-ZIP transcription factor interactions in vitro and in vivo. Biochim. Biophys. Acta 1759, 4–12 (2006).

    Article  CAS  Google Scholar 

  • Wu, K.C. et al. Coiled-coil trigger motifs in the 1B and 2B rod domain segments are required for the stability of keratin intermediate filaments. Mol. Biol. Cell 11, 3539–3558 (2000).

    Article  CAS  Google Scholar 

  • Yasukawa, K., Sawamura, D., McMillan, J.R., Nakamura, H. & Shimizu, H. Dominant and recessive compound heterozygous mutations in epidermolysis bullosa simplex demonstrate the role of the stutter region in keratin intermediate filament assembly. J. Biol. Chem. 277, 23670–23674 (2002).

    Article  CAS  Google Scholar 

  • Wilson, A.K., Coulombe, P.A. & Fuchs, E. The roles of K5 and K14 head, tail, and R/K L L E G E domains in keratin filament assembly in vitro. J. Cell Biol. 119, 401–414 (1992).

    Article  CAS  Google Scholar 

  • Arslan, M., Qin, Z. & Buehler, M.J. Coiled-coil intermediate filament stutter instability and molecular unfolding. Comput. Methods Biomech. Biomed. Engin. 14, 483–489 (2011).

    Article  Google Scholar 

  • Sun, T.T. & Green, H. Keratin filaments of cultured human epidermal cells. Formation of intermolecular disulfide bonds during terminal differentiation. J. Biol. Chem. 253, 2053–2060 (1978).

    CAS  PubMed  Google Scholar 

  • Hennings, H. & Holbrook, K.A. Calcium regulation of cell-cell contact and differentiation of epidermal cells in culture. Exp. Cell Res. 143, 127–142 (1983).

    Article  CAS  Google Scholar 

  • Feige, M.J. & Hendershot, L.M. Disulfide bonds in ER protein folding and homeostasis. Curr. Opin. Cell Biol. 23, 167–175 (2011).

    Article  CAS  Google Scholar 

  • Chung, B.M., Murray, C.I., Van Eyk, J.E. & Coulombe, P.A. Identification of a novel interaction between Annexin A2 and Keratin 17: Evidence for reciprocal regulation. J. Biol. Chem. 287, 7573–7581 (2012).

    Article  CAS  Google Scholar 

  • Crick, F.H. Is alpha-keratin a coiled coil? Nature 170, 882–883 (1952).

    Article  CAS  Google Scholar 

  • O'Shea, E.K., Klemm, J.D., Kim, P.S. & Alber, T. X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science 254, 539–544 (1991).

    Article  CAS  Google Scholar 

  • Herrmann, H., Häner, M., Brettel, M., Ku, N.O. & Aebi, U. Characterization of distinct early assembly units of different intermediate filament proteins. J. Mol. Biol. 286, 1403–1420 (1999).

    Article  CAS  Google Scholar 

  • Norlen, L. & Al-Amoudi, A. Stratum corneum keratin structure, function, and formation: the cubic rod-packing and membrane templating model. J. Invest. Dermatol. 123, 715–732 (2004).

    Article  CAS  Google Scholar 

  • Hashimoto, Y. et al. Immunohistochemical localization of sulfhydryl oxidase correlates with disulfide crosslinking in the upper epidermis of rat skin. Arch. Dermatol. Res. 292, 570–572 (2000).

    Article  CAS  Google Scholar 

  • Lyle, S. et al. The C8/144B monoclonal antibody recognizes cytokeratin 15 and defines the location of human hair follicle stem cells. J. Cell Sci. 111, 3179–3188 (1998).

    CAS  PubMed  Google Scholar 

  • Troy, T.C. & Turksen, K. In vitro characteristics of early epidermal progenitors isolated from keratin 14 (K14)-deficient mice: insights into the role of keratin 17 in mouse keratinocytes. J. Cell. Physiol. 180, 409–421 (1999).

    Article  CAS  Google Scholar 

  • Dupin, I., Sakamoto, Y. & Etienne-Manneville, S. Cytoplasmic intermediate filaments mediate actin-driven positioning of the nucleus. J. Cell Sci. 124, 865–872 (2011).

    Article  CAS  Google Scholar 

  • Arnesano, F. et al. The unusually stable quaternary structure of human Cu,Zn-superoxide dismutase 1 is controlled by both metal occupancy and disulfide status. J. Biol. Chem. 279, 47998–48003 (2004).

    Article  CAS  Google Scholar 

  • Meister, A. & Anderson, M.E. Glutathione. Annu. Rev. Biochem. 52, 711–760 (1983).

    Article  CAS  Google Scholar 

  • Ostergaard, H., Tachibana, C. & Winther, J.R. Monitoring disulfide bond formation in the eukaryotic cytosol. J. Cell Biol. 166, 337–345 (2004).

    Article  CAS  Google Scholar 

  • Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. in Methods in Enzymology, Macromolecular Crystallography Part A Vol. 276 (eds., Carter, C.W. Jr. & Sweet, R.M.) 307–326 (Academic Press, New York, 1997).

  • Terwilliger, T.C. SOLVE and RESOLVE: automated structure solution and density modification. Methods Enzymol. 374, 22–37 (2003).

    Article  CAS  Google Scholar 

  • Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  • Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  • Davis, I.W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).

    Article  Google Scholar 

  • Wallace, A.C., Laskowski, R.A. & Thornton, J.M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 8, 127–134 (1995).

    Article  CAS  Google Scholar 

  • Eswar, N. et al. Comparative Protein Structure Modeling with MODELLER. in Current Protocols in Bioinformatics (suppl. 15) 5.6.1–5.6.30 (John Wiley & Sons, Inc., 2006).

  • Baker, N.A., Sept, D., Joseph, S., Holst, M.J. & McCammon, J.A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA 98, 10037–10041 (2001).

    Article  CAS  Google Scholar 

  • Pang, Y.Y., Schermer, A., Yu, J. & Sun, T.T. Suprabasal change and subsequent formation of disulfide-stabilized homo- and hetero-dimers of keratins during esophageal epithelial differentiation. J. Cell Sci. 104, 727–740 (1993).

    PubMed  Google Scholar 

  • Lloyd, C. et al. The basal keratin network of stratified squamous epithelia: defining K15 function in the absence of K14. J. Cell Biol. 129, 1329–1344 (1995).

    Article  CAS  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4