A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://doi.org/10.1038/nrmicro2670 below:

Extreme genome reduction in symbiotic bacteria

  • Bak, A. L., Black, F. T., Christiansen, C. & Freundt, E. A. Genome size of mycoplasmal DNA. Nature 224, 1209–1210 (1969).

    Article  CAS  PubMed  Google Scholar 

  • Maniloff, J. & Morowitz, H. J. Cell biology of the mycoplasmas. Bacteriol. Rev. 36, 263–290 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace, D. C. & Morowitz, H. J. Genome size and evolution. Chromosoma 40, 121–126 (1973).

    Article  CAS  PubMed  Google Scholar 

  • Woese, C. R., Maniloff, J. & Zablen, L. B. Phylogenetic analysis of the mycoplasmas. Proc. Natl Acad. Sci. USA 77, 494–498 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weisburg, W. G., Woese, C. R., Dobson, M. E. & Weiss, E. A common origin of rickettsiae and certain plant pathogens. Science 230, 556–558 (1985).

    Article  CAS  PubMed  Google Scholar 

  • Fraser, C. M. et al. The minimal gene complement of Mycoplasma genitalium. Science 270, 397–403 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Andersson, S. G. et al. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396, 133–140 (1998).

    CAS  PubMed  Google Scholar 

  • Shigenobu, S., Watanabe, H., Hattori, M., Sakaki, Y. & Ishikawa, H. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407, 81–86 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Fraser, C. M. et al. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390, 580–586 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Mushegian, A. R. & Koonin, E. V. A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc. Natl Acad. Sci. USA 93, 10268–10273 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itaya, M. An estimation of minimal genome size required for life. FEBS Lett. 362, 257–260 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Mushegian, A. The minimal genome concept. Curr. Opin. Genet. Dev. 9, 709–714 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Koonin, E. V. Comparative genomics, minimal gene-sets and the last universal common ancestor. Nature Rev. Microbiol. 1, 127–136 (2003).

    Article  CAS  Google Scholar 

  • Harris, J. K., Kelley, S. T., Spiegelman, G. B. & Pace, N. R. The genetic core of the universal ancestor. Genome Res. 13, 407–412 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charlebois, R. L. & Doolittle, W. F. Computing prokaryotic gene ubiquity: rescuing the core from extinction. Genome Res. 14, 2469–2477 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koonin, E. V. How many genes can make a cell: The minimal-gene-set concept. Annu. Rev. Genomics Hum. Genet. 1, 99–116 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutchison, C. A. et al. Global transposon mutagenesis and a minimal Mycoplasma genome. Science 286, 2165–2169 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Akerley, B. J. et al. A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae. Proc. Natl Acad. Sci. USA 99, 966–971 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi, K. et al. Essential Bacillus subtilis genes. Proc. Natl Acad. Sci. USA 100, 4678–4683 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glass, J. I. et al. Essential genes of a minimal bacterium. Proc. Natl Acad. Sci. USA 103, 425–430 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curnow, A. W. et al. Glu-tRNAGln amidotransferase: a novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation. Proc. Natl Acad. Sci. USA 94, 11819–11826 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran, N. A., McCutcheon, J. P. & Nakabachi, A. Genomics and evolution of heritable bacterial symbionts. Annu. Rev. Genet. 42, 165–190 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Tamas, I. et al. 50 million years of genomic stasis in endosymbiotic bacteria. Science 296, 2376–2379 (2002).

    Article  CAS  PubMed  Google Scholar 

  • van Ham, R. C. et al. Reductive genome evolution in Buchnera aphidicola. Proc. Natl Acad. Sci. USA 100, 581–586 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akman, L. et al. Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia. Nature Genet. 32, 402–407 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Gil, R. et al. The genome sequence of Blochmannia floridanus: comparative analysis of reduced genomes. Proc. Natl Acad. Sci. USA 100, 9388–9393 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, D. et al. Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters. PLoS Biol. 4, e188 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran, N. A. Accelerated evolution and Muller's rachet in endosymbiotic bacteria. Proc. Natl Acad. Sci. USA 93, 2873–2878 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mira, A., Ochman, H. & Moran, N. A. Deletional bias and the evolution of bacterial genomes. Trends Genet. 17, 589–596 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Nilsson, A. I. et al. Bacterial genome size reduction by experimental evolution. Proc. Natl Acad. Sci. USA 102, 12112–12116 (2005). Experimental support for the hypothesis that bacteria which are subject to frequent population bottlenecks can rapidly delete large amounts of DNA from their genomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuo, C. H. & Ochman, H. Deletional bias across the three domains of life. Genome Biol. Evol. 1, 145–152 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fares, M. A., Ruiz-Gonzalez, M. X., Moya, A., Elena, S. F. & Barrio, E. Endosymbiotic bacteria: groEL buffers against deleterious mutations. Nature 417, 398 (2002). A study showing that high levels of chaperonin, as observed repeatedly in symbiotic bacteria, can ameliorate the effects of deleterious mutations, thus supporting the hypothesis that the rapid protein evolution which is characteristic of small genomes reflects largely deleterious evolution and that elevated expression of heat shock proteins represents a compensatory adaptation.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez, A. & Lynch, M. Non-adaptive origins of interactome complexity. Nature 474, 502–505 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toh, H. et al. Massive genome erosion and functional adaptations provide insights into the symbiotic lifestyle of Sodalis glossinidius in the tsetse host. Genome Res. 16, 149–156 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ochman, H. & Davalos, L. M. The nature and dynamics of bacterial genomes. Science 311, 1730–1733 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Burke, G. R. & Moran, N. A. Massive genomic decay in Serratia symbiotica, a recently evolved symbiont of aphids. Genome Biol. Evol. 3, 195–208 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole, S. T. et al. Massive gene decay in the leprosy bacillus. Nature 409, 1007–1011 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Kuo, C. H., Moran, N. A. & Ochman, H. The consequences of genetic drift for bacterial genome complexity. Genome Res. 19, 1450–1454 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCutcheon, J. P. The bacterial essence of tiny symbiont genomes. Curr. Opin. Microbiol. 13, 73–78 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burger, G., Gray, M. W. & Lang, B. F. Mitochondrial genomes: anything goes. Trends Genet. 19, 709–716 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Brouard, J. S., Otis, C., Lemieux, C. & Turmel, M. The exceptionally large chloroplast genome of the green alga Floydiella terrestris illuminates the evolutionary history of the Chlorophyceae. Genome Biol. Evol. 2, 240–256 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alverson, A. J. et al. Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae). Mol. Biol. Evol. 27, 1436–1448 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCutcheon, J. P. & von Dohlen, C. D. An interdependent metabolic patchwork in the nested symbiosis of mealybugs. Curr. Biol. 21, 1366–1372 (2011). A description of the smallest reported bacterial genome, that of ' Ca. Tremblaya princeps', and of the unusually integrated metabolic complementarity of a bacteria-within-a-bacterium symbiosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raoult, D. et al. The 1.2-megabase genome sequence of Mimivirus. Science 306, 1344–1350 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Fischer, M. G., Allen, M. J., Wilson, W. H. & Suttle, C. A. Giant virus with a remarkable complement of genes infects marine zooplankton. Proc. Natl Acad. Sci. USA 107, 19508–19513 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sueoka, N. On the genetic basis of variation and heterogeneity of DNA base composition. Proc. Natl Acad. Sci. USA 48, 582–592 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muto, A. & Osawa, S. The guanine and cytosine content of genomic DNA and bacterial evolution. Proc. Natl Acad. Sci. USA 84, 166–169 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox, E. C. & Yanofsky, C. Altered base ratios in the DNA of an Escherichia coli mutator strain. Proc. Natl Acad. Sci. USA 58, 1895–1902 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rocha, E. P. & Feil, E. J. Mutational patterns cannot explain genome composition: Are there any neutral sites in the genomes of bacteria? PLoS Genet. 6, e1001104 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hildebrand, F., Meyer, A. & Eyre-Walker, A. Evidence of selection upon genomic GC-content in bacteria. PLoS Genet. 6, e1001107 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hershberg, R. & Petrov, D. A. Evidence that mutation is universally biased towards AT in bacteria. PLoS Genet. 6, e1001115 (2010). Along with reference 50, provides evidence of a universal (G or C)→(A or T) mutational bias in bacteria.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCutcheon, J. P. & Moran, N. A. Functional convergence in reduced genomes of bacterial symbionts spanning 200 My of evolution. Genome Biol. Evol. 2, 708–718 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakabachi, A. et al. The 160-kilobase genome of the bacterial endosymbiont Carsonella. Science 314, 267 (2006). A report of the first discovery of a tiny cellular genome that is only about one-third the size of the smallest previously reported bacterial genome but retains some genes that are devoted to nutrition of the host insect.

    Article  CAS  PubMed  Google Scholar 

  • Rocha, E. P. & Danchin, A. Base composition bias might result from competition for metabolic resources. Trends Genet. 18, 291–294 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Bentley, S. D. & Parkhill, J. Comparative genomic structure of prokaryotes. Annu. Rev. Genet. 38, 771–792 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Lind, P. A. & Andersson, D. I. Whole-genome mutational biases in bacteria. Proc. Natl Acad. Sci. USA 105, 17878–17883 (2008). Experimental support for the role of DNA repair enzymes and small effective population sizes in the decreased GC content seen in most endosymbiont genomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCutcheon, J. P., McDonald, B. R. & Moran, N. A. Origin of an alternative genetic code in the extremely small and GC-rich genome of a bacterial symbiont. PLoS Genet. 5, e1000565 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knight, R. D., Freeland, S. J. & Landweber, L. F. Rewiring the keyboard: evolvability of the genetic code. Nature Rev. Genet. 2, 49–58 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Maniloff, J. in Molecular Biology and Pathogenicity of Mycoplasmas (eds Razin, S. & Herrmann, R.) 31–44 (Kluwer Academic Publishers, New York, 2002).

    Book  Google Scholar 

  • Knight, R. D., Landweber, L. F. & Yarus, M. How mitochondria redefine the code. J. Mol. Evol. 53, 299–313 (2001). A good overview of the many hypotheses to explain codon reassignments in mitochondria.

    Article  CAS  PubMed  Google Scholar 

  • Osawa, S. & Jukes, T. H. Evolution of the genetic code as affected by anticodon content. Trends Genet. 4, 191–198 (1988).

    Article  CAS  PubMed  Google Scholar 

  • Osawa, S., Jukes, T. H., Watanabe, K. & Muto, A. Recent evidence for evolution of the genetic code. Microbiol. Rev. 56, 229–264 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santos, M. A., Moura, G., Massey, S. E. & Tuite, M. F. Driving change: the evolution of alternative genetic codes. Trends Genet. 20, 95–102 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Andersson, S. G. & Kurland, C. G. Genomic evolution drives the evolution of the translation system. Biochem. Cell Biol. 73, 775–787 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Hansen, A. K. & Moran, N. A. Aphid genome expression reveals host-symbiont cooperation in the production of amino acids. Proc. Natl Acad. Sci. USA 108, 2849–2854 (2011). Work showing a high level of coordination between gene expression in the aphid host and the B. aphidicola symbiont, and highlighting the types of host co-adaptations that allow genome reduction in mutualistic endosymbionts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniel, R. A. & Errington, J. Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell 113, 767–776 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Wachi, M. et al. Mutant isolation and molecular cloning of mre genes, which determine cell shape, sensitivity to mecillinam, and amount of penicillin-binding proteins in Escherichia coli. J. Bacteriol. 169, 4935–4940 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wachi, M., Doi, M., Okada, Y. & Matsuhashi, M. New mre genes mreC and mreD, responsible for formation of the rod shape of Escherichia coli cells. J. Bacteriol. 171, 6511–6516 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henriques, A. O., Glaser, P., Piggot, P. J. & Moran, C. P., Jr. Control of cell shape and elongation by the rodA gene in Bacillus subtilis. Mol. Microbiol. 28, 235–247 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Leaver, M., Dominguez-Cuevas, P., Coxhead, J. M., Daniel, R. A. & Errington, J. Life without a wall or division machine in Bacillus subtilis. Nature 457, 849–853 (2009). The demonstration that few steps are required to form cell wall-less 'L-forms' of Bacillus subtilis , which become polymorphic spheres and divide by an unusual, FtsZ-independent extrusion–resolution mechanism. This work highlights the problem in defining a universal set of essential genes, as a single point mutation renders the 'essential' ftsZ gene non-essential.

    Article  CAS  PubMed  Google Scholar 

  • Moran, N. A., Tran, P. & Gerardo, N. M. Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the Bacterial phylum Bacteroidetes. Appl. Environ. Microbiol. 71, 8802–8810 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dufresne, A., Garczarek, L. & Partensky, F. Accelerated evolution associated with genome reduction in a free-living prokaryote. Genome Biol. 6, R14 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  • Moran, N. A. Microbial minimalism: genome reduction in bacterial pathogens. Cell 108, 583–586 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Hara, E. et al. The predominant protein in an aphid endosymbiont is homologous to an E. coli heat shock protein. Symbiosis 8, 271–283 (1990).

    CAS  Google Scholar 

  • Baumann, P., Baumann, L. & Clark, M. A. Levels of Buchnera aphidicola chaperonin GroEL during growth of the Aphid Schizaphis graminum. Curr. Microbiol. 32, 279–285 (1996).

    Article  CAS  Google Scholar 

  • Poliakov, A. et al. Large-scale label-free quantitative proteomics of the pea aphid-Buchnera symbiosis. Mol. Cell. Proteomics 10, M110.007039 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haines, L. R., Haddow, J. D., Aksoy, S., Gooding, R. H. & Pearson, T. W. The major protein in the midgut of teneral Glossina morsitans morsitans is a molecular chaperone from the endosymbiotic bacterium Wigglesworthia glossinidia. Insect Biochem. Mol. Biol. 32, 1429–1438 (2002).

    Article  CAS  PubMed  Google Scholar 

  • McCutcheon, J. P., McDonald, B. R. & Moran, N. A. Convergent evolution of metabolic roles in bacterial co-symbionts of insects. Proc. Natl Acad. Sci. USA 106, 15394–15399 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokuriki, N. & Tawfik, D. S. Chaperonin overexpression promotes genetic variation and enzyme evolution. Nature 459, 668–673 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Huang, C. Y., Lee, C. Y., Wu, H. C., Kuo, M. H. & Lai, C. Y. Interactions of chaperonin with a weakly active anthranilate synthase from the aphid endosymbiont Buchnera aphidicola. Microb. Ecol. 56, 696–703 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Tatusov, R. L., Galperin, M. Y., Natale, D. A. & Koonin, E. V. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28, 33–36 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bjork, G. R. et al. Transfer RNA modification. Annu. Rev. Biochem. 56, 263–287 (1987).

    Article  CAS  PubMed  Google Scholar 

  • Kessler, D. Enzymatic activation of sulfur for incorporation into biomolecules in prokaryotes. FEMS Microbiol. Rev. 30, 825–840 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Kambampati, R. & Lauhon, C. T. IscS is a sulfurtransferase for the in vitro biosynthesis of 4-thiouridine in Escherichia coli tRNA. Biochemistry 38, 16561–16568 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Gardner, M. J. et al. Genome sequence of Theileria parva, a bovine pathogen that transforms lymphocytes. Science 309, 134–137 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Gray, M. W., Burger, G. & Lang, B. F. Mitochondrial evolution. Science 283, 1476–1481 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Timmis, J. N., Ayliffe, M. A., Huang, C. Y. & Martin, W. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nature Rev. Genet. 5, 123–135 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Palmer, J. D. Organelle genomes: going, going, gone! Science 275, 790–791 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Truscott, K. N., Brandner, K. & Pfanner, N. Mechanisms of protein import into mitochondria. Curr. Biol. 13, R326–R337 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Schleiff, E. & Soll, J. Travelling of proteins through membranes: translocation into chloroplasts. Planta 211, 449–456 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Andersson, J. O. Evolutionary genomics: is Buchnera a bacterium or an organelle? Curr. Biol. 10, R866–R868 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Consortium, T. I. A. G. Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biol. 8, e1000313 (2010).

    Article  CAS  Google Scholar 

  • Kirkness, E. F. et al. Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle. Proc. Natl Acad. Sci. USA 107, 12168–12173 (2010). The complete louse and endosymbiont genomes reveal that no bacterial genes have been transferred to the insect genome and that genome reduction in ' Ca. Riesia pediculicola' has not been associated with gene transfer to the host, as is common in organelles.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikoh, N. et al. Bacterial genes in the aphid genome: absence of functional gene transfer from Buchnera to its host. PLoS Genet. 6, e1000827 (2010). An exhaustive search of the aphid genome for bacterial genes, showing that the endosymbiont B. aphidicola has not achieved its small genome via a process of transfer of functional genes to the nuclear genome of its hosts. In this case at least, this process of gene transfer can be ruled out, distinguishing B. aphidicola from organelles.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo, N., Nikoh, N., Ijichi, N., Shimada, M. & Fukatsu, T. Genome fragment of Wolbachia endosymbiont transferred to X chromosome of host insect. Proc. Natl Acad. Sci. USA 99, 14280–14285 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hotopp, J. C. et al. Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 317, 1753–1756 (2007).

    Article  CAS  Google Scholar 

  • Andersson, J. O. & Andersson, S. G. Genome degradation is an ongoing process in Rickettsia. Mol. Biol. Evol. 16, 1178–1191 (1999).

    Article  CAS  PubMed  Google Scholar 

  • McCutcheon, J. P. & Moran, N. A. Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. Proc. Natl Acad. Sci. USA 104, 19392–19397 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keeling, P. J. Endosymbiosis: bacteria sharing the load. Curr. Biol. 21, R623–R624 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Keeling, P. J. & Archibald, J. M. Organelle evolution: what's in a name? Curr. Biol. 18, R345–R347 (2008). A good overview of the problems in classifying bacteria with reduced genomes as endosymbionts or organelles.

    Article  CAS  PubMed  Google Scholar 

  • Theissen, U. & Martin, W. The difference between organelles and endosymbionts. Curr. Biol. 16, R1016–R1017 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya, D. & Archibald, J. M. The difference between organelles and endosymbionts: response to Theissen and Martin. Curr. Biol. 16, R1017–R1018 (2006).

    Article  CAS  Google Scholar 

  • Bhattacharya, D., Archibald, J. M., Weber, A. P. M. & Reyes-Prieto, A. How do endosymbionts become organelles? Understanding early events in plastid evolution. Bioessays 29, 1239–1246 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Buchner, P. Endosymbiosis of animals with plant microorganisms. (Interscience, New York, 1965).

    Google Scholar 

  • Baumann, L. & Baumann, P. Cospeciation between the primary endosymbionts of mealybugs and their hosts. Curr. Microbiol. 50, 84–87 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Baumann, L., Thao, M. L., Hess, J. M., Johnson, M. W. & Baumann, P. The genetic properties of the primary endosymbionts of mealybugs differ from those of other endosymbionts of plant sap-sucking insects. Appl. Environ. Microbiol. 68, 3198–3205 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thao, M. L., Gullan, P. J. & Baumann, P. Secondary (gamma-Proteobacteria) endosymbionts infect the primary (beta-Proteobacteria) endosymbionts of mealybugs multiple times and coevolve with their hosts. Appl. Environ. Microbiol. 68, 3190–3197 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kono, M., Koga, R., Shimada, M. & Fukatsu, T. Infection dynamics of coexisting beta- and gammaproteobacteria in the nested endosymbiotic system of mealybugs. Appl. Environ. Microbiol. 74, 4175–4184 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Katoh, K., Kuma, K., Toh, H. & Miyata, T. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 33, 511–518 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thao, M. L. & Baumann, P. Evolutionary relationships of primary prokaryotic endosymbionts of whiteflies and their hosts. Appl. Environ. Microbiol. 70, 3401–3406 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart, G. C. Taking shape: control of bacterial cell wall biosynthesis. Mol. Microbiol. 57, 1177–1181 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Silverman, D. J., Wisseman, C. L., Jr & Waddell, A. In vitro studies of Rickettsia-host cell interactions: ultrastructural study of Rickettsia prowazekii-infected chicken embryo fibroblasts. Infect. Immun. 29, 778–790 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tully, J. G., Taylor-Robinson, D., Cole, R. M. & Rose, D. L. A newly discovered mycoplasma in the human urogenital tract. Lancet 1, 1288–1291 (1981).

    Article  CAS  PubMed  Google Scholar 

  • Schroder, D. et al. Intracellular endosymbiotic bacteria of Camponotus species (carpenter ants): systematics, evolution and ultrastructural characterization. Mol. Microbiol. 21, 479–489 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Aksoy, S. Wigglesworthia gen. nov. and Wigglesworthia glossinidia sp. nov., taxa consisting of the mycetocyte-associated, primary endosymbionts of tsetse flies. Int. J. Syst. Bacteriol. 45, 848–851 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Moran, N. A., Dale, C., Dunbar, H., Smith, W. A. & Ochman, H. Intracellular symbionts of sharpshooters (Insecta: Hemiptera: Cicadellinae) form a distinct clade with a small genome. Environ. Microbiol. 5, 116–126 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Griffiths, G. W. & Beck, S. D. Effects of antibiotics on intracellular symbiotes in the pea aphid, Acyrthosiphon pisum. Cell Tissue Res. 148, 287–300 (1974).

    Article  CAS  PubMed  Google Scholar 

  • von Dohlen, C. D., Kohler, S., Alsop, S. T. & McManus, W. R. Mealybug beta-proteobacterial endosymbionts contain gamma-proteobacterial symbionts. Nature 412, 433–436 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Valero, L. et al. Coexistence of Wolbachia with Buchnera aphidicola and a secondary symbiont in the aphid Cinara cedri. J. Bacteriol. 186, 6626–6633 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4