A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://doi.org/10.1038/nrg2664 below:

The genetics of inbreeding depression

  • Darwin, C. R. The Effects of Cross and Self Fertilization in the Vegetable Kingdom (John Murray, London, 1876).

    Book  Google Scholar 

  • Darwin, C. R. The Various Contrivances by which Orchids are Fertilised by Insects. (John Murray, London, 1862).

    Google Scholar 

  • Darwin, C. R. The Different Forms of Flowers on Plants of the Same Species (John Murray, London, 1877).

    Book  Google Scholar 

  • McCune, A. R. et al. A low genomic number of recessive lethals in natural populations of bluefin killifish and zebrafish. Science 296, 2398–2401 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H.-Y. et al. A genome-wide transcription analysis reveals a close correlation of promoter INDEL polymorphism and heterotic gene expression in rice hybrids. Mol. Plant 1, 720–731 (2008). A fascinating, detailed study of gene expression differences in rice, together with information about DNA sequence differences in non-coding regions that are adjacent to genes. It also contains clear models that show the possible expression patterns that can arise.

    Article  CAS  PubMed  Google Scholar 

  • Duvick, D. N. Biotechnology in the 1930s: the development of hybrid maize. Nature Rev. Genet. 2, 69–74 (2000).

    Article  Google Scholar 

  • Grossniklaus, U., Nogler, G. A. & Dijk, P. J. v. How to avoid sex: the genetic control of gametophytic apomixis. Plant Cell 13, 1491–1498 (2004).

    Google Scholar 

  • Lewontin, R. C. The Genetic Basis of Evolutionary Change (Columbia Univ. Press, New York, 1974).

    Google Scholar 

  • Crow, J. F. Mutation, mean fitness, and genetic load. Oxf. Surv. Evol. Biol. 9, 3–42 (1993).

    Google Scholar 

  • Barrière, A. et al. Detecting heterozygosity in shotgun genome assemblies: lessons from obligately outcrossing nematodes. Genome Res. 19, 470–480 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sved, J. A. An estimate of heterosis in Drosophila melanogaster. Genet. Res. 18, 97–105 (1971).

    Article  CAS  PubMed  Google Scholar 

  • Latter, B., Mulley, J., Reid, D. & Pascoe, L. Reduced genetic load revealed by slow inbreeding in Drosophila melanogaster. Genetics 139, 287–297 (1998).

    Article  Google Scholar 

  • Willis, J. H. Genetic analysis of inbreeding depression caused by chlorophyll-deficient lethals in Mimulus guttatus. Heredity 69, 562–572 (1992).

    Article  Google Scholar 

  • Klekowski, E. J., Lowenfeld, R. L. & Hepler, P. K. Mangrove genetics II. Outcrossing and lower spontaneous mutation rates in Puerto Rican Rhizophora. Int. J. Plant Sci. 155, 373–381 (1994).

    Article  Google Scholar 

  • Ohnishi, O. Population genetics of cultivated buckwheat, Fagopyrum esculentum Moench. I. Frequency of chlorophyll-deficient mutants in Japanese populations. Jpn J. Genet. 57, 623–639 (1982).

    Article  Google Scholar 

  • Ohnishi, O. Population genetics of cultivated buckwheat, Fagopyrum esculentum Moench. III. Frequency of sterility mutants in Japanese populations. Jpn J. Genet. 60, 391–404 (1985).

    Article  Google Scholar 

  • Willis, J. H. The contribution of male sterility mutations to inbreeding depression in Mimulus guttatus. Heredity 83, 337–346 (1999). This genetic study extends the evidence for large-effect mutations that segregate in natural populations to species other than D. melanogaster.

    Article  PubMed  Google Scholar 

  • Werren, J. in The Natural History of Inbreeding and Outbreeding (ed. Thornhill, N. W.) 42–59 (Univ. Chicago Press, 1993).

    Google Scholar 

  • Henter, H. J. Inbreeding depression and haplodiploidy: experimental measures in a parasitoid and comparisons across diploid and haplodiploid insect taxa. Evolution 57, 1793–1803 (2003).

    Article  PubMed  Google Scholar 

  • Fisher, R. A. Average excess and average effect of a gene substitution. Ann. Eugen. 11, 53–63 (1941). An important theoretical paper that first introduced and showed the genetic transmission advantage of inbreeding.

    Article  Google Scholar 

  • Nagylaki, T. A model for the evolution of self fertilization and vegetative reproduction. J. Theor. Biol. 58, 55–58 (1976).

    Article  CAS  PubMed  Google Scholar 

  • Stebbins, G. L. Variation and Evolution in Plants (Columbia Univ. Press, New York, 1950).

    Book  Google Scholar 

  • Lloyd, D. G. Some reproductive factors affecting the selection of self-fertilization in plants. Am. Nat. 113, 67–79 (1979).

    Article  Google Scholar 

  • Porcher, E. & Lande, R. The evolution of self-fertilization and inbreeding depression under pollen discounting and pollen limitation. J. Evol. Biol. 18, 497–508 (2005). An important, integrated model of outcrossing rate evolution that includes several biologically relevant processes.

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth, D. & Charlesworth, B. Inbreeding depression with heterozygote advantage and its effect on selection for modifiers changing the outcrossing rate. Evolution 44, 870–888 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Johnston, M. O. et al. Correlations among fertility components can maintain mixed mating in plants. Am. Nat. 173, 1–11 (2009).

    Article  PubMed  Google Scholar 

  • Byers, D. L. & Waller, D. M. Do plant populations purge their genetic load? Effects of population size and mating history on inbreeding depression. Annu. Rev. Ecol. Syst. 30, 479–513 (1999).

    Article  Google Scholar 

  • Carr, D. E. & Dudash, M. Recent approaches into the genetic basis of inbreeding depression in plants. Philos. Trans. R. Soc. Lond. B 358, 1071–1084 (2003).

    Article  CAS  Google Scholar 

  • Crnokrak, P. & Barrett, S. C. D. Perspective: purging the genetic load: a review of the experimental evidence. Evolution 56, 2347–2358 (2002).

    Article  PubMed  Google Scholar 

  • Charlesworth, B., Charlesworth, D. & Morgan, M. T. Genetic loads and estimates of mutation rates in very inbred plant populations. Nature 347, 380–382 (1990).

    Article  Google Scholar 

  • Ohta, T. & Cockerham, C. C. Detrimental genes with partial selfing and effects on a neutral locus. Genet. Res. 23, 191–200 (1974).

    Article  Google Scholar 

  • Wang, J., Hill, W. G., Charlesworth, D. & Charlesworth, B. Dynamics of inbreeding depression due to deleterious mutations in small populations: I. Mutation parameters and inbreeding rate. Genet. Res. 74, 165–178 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth, D., Morgan, M. T. & Charlesworth, B. Inbreeding depression, genetic load and the evolution of outcrossing rates in a multi-locus system with no linkage. Evolution 44, 1469–1489 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Willis, J. H. The role of genes of large effect on inbreeding depression in Mimulus guttatus. Evolution 53, 1678–1691 (1999). An ingenious experimental approach to understanding how much inbreeding depression can be accounted for by large-effect deleterious mutations.

    Article  CAS  PubMed  Google Scholar 

  • Fox, C. W., Scheibly, K. L. & Reed, D. H. Experimental evolution of the genetic load and its implications for the genetic basis of inbreeding depression. Evolution 62, 2236–2249 (2008).

    Article  PubMed  Google Scholar 

  • Moll, R. H., Cock, C. C., Stuber, C. W. & Williams, W. P. Selection responses, genetic–environmental interactions, and heterosis with recurrent selection for yield in maize. Crop Sci. 18, 641–645 (1978).

    Article  Google Scholar 

  • Charlesworth, D. & Charlesworth, B. Inbreeding depression and its evolutionary consequences. Ann. Rev. Ecol. Syst. 18, 237–268 (1987).

    Article  Google Scholar 

  • Falconer, D. S. & Mackay, T. F. C. Introduction to Quantitative Genetics (Longman, Harlow, 1996).

    Google Scholar 

  • Haldane, J. B. S. Parental and fraternal correlations in fitness. Ann. Eugen. 14, 288–292 (1949).

    Article  CAS  PubMed  Google Scholar 

  • Houle, D., Hoffmaster, D. K., Assimacopoulos, S. & Charlesworth, B. The genomic rate of mutation for fitness in Drosophila. Nature 359, 58–60 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Mukai, T., Cardellino, R. A., Watanabe, T. K. & Crow, J. F. The genetic variance for viability and its components in a local population of Drosophila melanogaster. Genetics 78, 1195–1208 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charlesworth, B., Miyo, T. & Borthwick, H. Selection responses of means and inbreeding depression for female fecundity in Drosophila melanogaster suggest contributions from intermediate-frequency alleles to quantitative trait variation. Genet. Res. 89, 85–91 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth, B. & Hughes, K. A. in Evolutionary Genetics: From Molecules to Morphology (eds Singh, R. S. & Krimbas, C. B.) 369–392 (Cambridge Univ. Press, 2000).

    Google Scholar 

  • Charlesworth, B. & Hughes, K. A. Age-specific inbreeding depression and components of genetic variance in relation to the evolution of senescence. Proc. Natl Acad. Sci. USA 93, 6140–6145 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charlesworth, B. & Charlesworth, D. The genetic basis of inbreeding depression. Genet. Res. 74, 329–340 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Kelly, J. K. & Willis, J. H. Deleterious mutations and genetic variation for flower size in Mimulus guttatus. Evolution 55, 937–942 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Kelly, J. K. Deleterious mutations and the genetic variance of male fitness components in Mimulus guttatus. Genetics 164, 1071–1085 (2003). An integrated analysis that uses quantitative genetic approaches to detect the effects of deleterious mutations on a fitness-related character.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schultz, S. & Willis, J. H. Individual variation in inbreeding depression: the roles of inbreeding history and mutation. Genetics 141, 1209–1223 (1995). The authors extend models that are used to predict the overall average inbreeding depression to predict the distribution of effects.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stuber, C. W., Lincoln, S. E., Wolff, D. W., Helentjaris, T. & Lander, E. S. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics 132, 823–839 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia, A., Wang, S., Melchinger, A. E. & Zeng, Z. B. Quantitative trait loci mapping and the genetic basis of heterosis in maize and rice. Genetics 180, 1707–1724 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • Graham, G., Wolff, D. & Stuber, C. Characterization of a yield quantitative trait locus on chromosome five of maize by fine mapping. Crop Sci. 37, 1601–1610 (1997).

    Article  CAS  Google Scholar 

  • Latter, B. Mutant alleles of small effect are primarily responsible for the loss of fitness with slow inbreeding in Drosophila melanogaster. Genetics 148, 1143–1158 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noor, M. A. F., Cunningham, A. & Larkin, J. Consequences of recombination rate variation on quantitative trait locus mapping studies: simulations based on the Drosophila melanogaster genome. Genetics 159, 581–588 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMullen, M. D. et al. Genetic properties of the maize nested association mapping population. Science 325, 737–740 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Mitchell-Olds, T. Interval mapping of viability loci causing heterosis in Arabidopsis. Genetics 140, 1105–1109 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radoev, M., Becker, H. & Ecke, W. Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Genetics 179, 1547–1558 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright, S. Evolution and the Genetics of Populations Vol. 3 (Univ. Chicago Press, 1977).

    Google Scholar 

  • Redei, G. P. Single locus heterosis. Z. Indukt. Abstamm. Vererbungsl. 93, 164–170 (1962).

    Google Scholar 

  • Schuler, J. F. Natural mutations in inbred lines of maize and their heterotic effect. I. Comparison of parent, mutant and their F1 hybrid in a highly inbred background. Genetics 39, 908–922 (1954).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuler, J. F. & Sprague, G. F. Natural mutations in inbred lines of maize and their heterotic effect. II. Comparison of mother line versus mutant when outcrossed to related inbreds. Genetics 41, 281–291 (1955). An important early test to distinguish between true overdominance and pseudo-overdominance.

    Article  Google Scholar 

  • Xiao, J., Li, J., Yuan, L. & Tanksley, S. Dominance is the major genetic-basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics 140, 745–754 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Z., Pinson, S. R. M., Park, W. D., Patterson, A. H. & Stansel, J. W. Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics 145, 453–465 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Z. et al. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield. Genetics 158, 1737–1753 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo, X. et al. Additive and over-dominant effects resulting from epistatic loci are the primary genetic basis of heterosis in rice. J. Integr. Plant Biol. 51, 393–408 (2009).

    Article  PubMed  Google Scholar 

  • Kusterer, B. et al. Heterosis for biomass-related traits in Arabidopsis investigated by quantitative trait loci analysis of the triple testcross design with recombinant inbred lines. Genetics 177, 1839–1850 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kusterer, B. et al. Analysis of a triple testcross design with recombinant inbred lines reveals a significant role of epistasis in heterosis for biomass-related traits in Arabidopsis. Genetics 175, 2009–2017 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melchinger, A. E. et al. Genetic basis of heterosis for growth-related traits in Arabidopsis investigated by testcross progenies of near-isogenic lines reveals a significant role of epistasis. Genetics 177, 1827–1837 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  • Semel, Y. et al. Overdominant quantitative trait loci for yield and fitness in tomato. Proc. Natl Acad. Sci. USA 103, 12981–12986 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakazato, T., Bogonovich, M. & Moyle, L. C. Environmental factors predict adaptive phenotypic differentiation within and between two wild Andean tomatoes. Evolution 62, 774–792 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Eshed, Y. & Zamir, D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141, 1147–1162 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Remington, D. & O'Malley, D. Whole-genome characterization of embryonic stage inbreeding depression in a selfed loblolly pine family. Genetics 155, 337–348 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Remington, D. & O'Malley, D. Evaluation of major genetic loci contributing to inbreeding depression for survival and early growth in a selfed family of Pinus taeda. Evolution 54, 1580–1589 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Huang, X. et al. High-throughput genotyping by whole-genome resequencing. Genome Res. 19, 1068–1076 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Springer, N. & Stupar, R. Allelic variation and heterosis in maize: how do two halves make more than a whole? Genome Res. 17, 264–275 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Song, X., Ni, Z., Yao, Y., Zhang, Y. & Sun, Q. Identification of differentially expressed proteins between hybrid and parents in wheat (Triticum aestivum L.) seedling leaves. Theor. Appl. Genet. 118, 213–225 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Swanson-Wagner, R. A. et al. All possible modes of gene action are observed in a global comparison of gene expression in a maize F1 hybrid and its inbred parents. Proc. Natl Acad. Sci. USA 103, 6805–6810 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auger, D. et al. Nonadditive gene expression in diploid and triploid hybrids of maize. Genetics 169, 389–397 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uzarowska, A. et al. Comparative expression profiling in meristems of inbred-hybrid triplets of maize based on morphological investigations of heterosis for plant height. Plant Mol. Biol. 63, 21–34 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Guo, M. et al. Genome-wide transcript analysis of maize hybrids: allelic additive gene expression and yield heterosis. Theor. Appl. Genet. 113, 831–845 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Stupar, R. M. et al. Gene expression analyses in maize inbreds and hybrids with varying levels of heterosis. BMC Plant Biol. 8, 33 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lemos, B., Araripe, L. O., Fontanillas, P. & Hartl, D. L. Dominance and the evolutionary accumulation of cis- and trans-effects on gene expression. Proc. Natl Acad. Sci. USA 105, 14471–14476 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, X., Chai, Y. & Liu, B. Epigenetic inheritance and variation of DNA methylation level and pattern in maize intra-specific hybrids. Plant Sci. 172, 930–938 (2007).

    Article  CAS  Google Scholar 

  • Frazer, K. A., Murray, S. S., Schork, N. J. & Topol, E. J. Human genetic variation and its contribution to complex traits. Nature Rev. Genet. 10, 241–251 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Valdar, W., Flint, J. & Mott, R. Simulating the collaborative cross: power of quantitative trait loci detection and mapping resolution in large sets of recombinant inbred strains of mice. Genetics 172, 1783–1797 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valdar, W. et al. Genome-wide genetic association of complex traits in heterogeneous stock mice. Nature Genet. 38, 879–887 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Macdonald, S. & Long, A. Joint estimates of quantitative trait locus effect and frequency using synthetic recombinant populations of Drosophila melanogaster. Genetics 176, 1261–1281 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gruber, J. D., Genissel, A., Macdonald, S. & Long, A. How repeatable are associations between polymorphisms in achaete–scute and bristle number variation in Drosophila? Genetics 175, 1987–1997 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charlesworth, D. Balancing selection and its effects on sequences in nearby genome regions. PLoS Genet. 2, e64 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Currat, M. et al. Molecular analysis of the β-globin gene cluster in the Niokholo Mandenka population reveals a recent origin of the βS Senegal mutation. Am. J. Hum. Genet. 70, 207–223 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Hamblin, M. T. & Rienzo, A. D. Detection of the signature of natural selection in humans: evidence from the Duffy blood group locus. Am. J. Hum. Genet. 66, 1669–1679 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helgason, A., Pálsson, S., GuÐbjartsson, D. F., Kristjánsson, þ . & Stefánsson, K. An association between the kinship and fertility of human couples. Science 319, 813–816 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Bittles, A. H. & Neel, J. V. The costs of human inbreeding and their implications for variations at the DNA level. Nature Genet. 8, 117–121 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Stoltenberg, C., Magnus, P., Skrondal, A. & Lie, R. Consanguinity and recurrence risk of stillbirth and infant death. Am. J. Public Health 89, 517–523 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoltenberg, C., Magnus, P., Skrondal, A. & Lie, R. Consanguinity and recurrence risk of birth defects: a population-based study. Am. J. Med. Genet. 82, 423–428 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Rudan, I. et al. Inbreeding and risk of late onset complex disease. J. Med. Genet. 40, 925–932 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weeks, S. C., Reed, S., Ott, D. & Scanabissi, F. Inbreeding effects on sperm production in clam shrimp (Eulimnadia texana). Evol. Ecol. Res. 11, 125–134 (2009).

    Google Scholar 

  • Hoare, K. & Hughes, R. N. Inbreeding and hermaphroditism in the sessile, brooding bryozoan Celleporella hyalina. Mar. Biol. 139, 147–162 (2001).

    Article  Google Scholar 

  • Husband, B. C. & Schemske, D. W. Evolution of the magnitude and timing of inbreeding depression in plants. Evolution 50, 54–70 (1995).

    Article  Google Scholar 

  • Escobar, J., Nicot, A. & David, P. The different sources of variation in inbreeding depression, heterosis and outbreeding depression in a metapopulation of Physa acuta. Genetics 180, 1593–1608 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • Dolgin, E., Charlesworth, B., Baird, S. & Cutter, A. Inbreeding and outbreeding depression in Caenorhabditis nematodes. Evolution 61, 1339–1352 (2007).

    Article  PubMed  Google Scholar 

  • Weller, S. G., Sakai, A. K., Thai, D. A., Tom, J. & Rankin, A. E. Inbreeding depression and heterosis in populations of Schiedea viscosa, a highly selfing species. J. Evol. Biol. 18, 1434–1444 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Richards, C. Inbreeding depression and genetic rescue in a plant metapopulation Am. Nat. 155, 383–394 (2000).

    Article  PubMed  Google Scholar 

  • Crow, J. F. & Simmons, M. J. in The Genetics and Biology of Drosophila (eds Ashburner, M., Carson, H. L. & Thompson, J. N.) 1–35 (Academic Press, London, 1983).

    Google Scholar 

  • Hoffmann, A. A. & Rieseberg, L. H. Revisiting the impact of inversions in evolution: from population genetic markers to drivers of adaptive shifts and speciation. Ann. Rev. Ecol. Evol. Syst. 39, 21–42 (2008).

    Article  Google Scholar 

  • Dyer, K. A., Charlesworth, B. & Jaenike, J. Chromosome-wide linkage disequilibrium as a consequence of meiotic drive Proc. Natl Acad. Sci. USA 104, 1587–1592 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glemin, S., Bataillon, T., Ronfort, J., Mignot, A. & Olivieri, I. Inbreeding depression in small populations of self-incompatible plants. Genetics 159, 1217–1229 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pankey, M. & Wares, J. Overdominant maintenance of diversity in the sea star Pisaster ochraceus. J. Evol. Biol. 22, 80–87 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Scoville, A., Lee, Y. W., Willis, J. H. & Kelly, J. K. The contribution of chromosomal polymorphisms to the G-matrix of Mimulus guttatus. New Phytol. 183, 803–815 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • Fishman, L. & Saunders, A. Centromere-associated female meiotic drive entails male fitness costs in monkeyflowers. Science 322, 1559–1562 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Williams, W. Heterosis and the genetics of complex characters. Nature 184, 527–530 (1959).

    Article  CAS  PubMed  Google Scholar 

  • Schnell, F. & Cockerham, C. Multiplicative vs. arbitrary gene action in heterosis. Genetics 131, 461–469 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bataillon, T. & Kirkpatrick, M. Inbreeding depression due to mildly deleterious mutations in finite populations: size does matter. Genet. Res. 75, 75–81 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Glémin, S., Ronfort, J. & Bataillon, T. Patterns of inbreeding depression and architecture of the load in subdivided populations. Genetics 165, 2193–2212 (2003). By analysing a model of deleterious mutations in a biologically realistic model of population structure, the authors reveal heterosis in inter-population crosses and within-population inbreeding depression.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schierup, M. H., Vekemans, X. & Charlesworth, D. The effect of subdivision on variation at multi-allelic loci under balancing selection. Genet. Res. 76, 51–62 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Coyne, J. A. & Orr, H. A. Speciation (Sinauer, Sunderland, 2004).

    Google Scholar 

  • Song, L., Guo, W. & Zhang, T. Interaction of novel Dobzhansky–Muller type genes for the induction of hybrid lethality between Gossypium hirsutum and G. barbadense cv. Coastland R4-4. Theor. Appl. Genet. 119, 33–41 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Bomblies, K., Lempe, J., Dangl, J. & Weigel, D. Autoimmune response as a mechanism for a Dobzhansky–Muller-type incompatibility syndrome in plants. PLoS Biol. 5, 1962–1972 (2007).

    Article  CAS  Google Scholar 

  • Seidel, H. S., Rockman, M. V. & Kruglyak, L. Widespread genetic incompatibility in C. elegans maintained by balancing selection. Science 319, 589–594 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurst, L. D. Genetics and the understanding of selection. Nature Rev. Genet. 10, 83–93 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Yang, J., Gu, Z. & Li, W. Rate of protein evolution versus fitness effect of gene deletion. Mol. Biol. Evol. 20, 772–774 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Kondrashov, A. S. & Crow, J. F. A molecular approach to estimating the human deleterious mutation-rate. Hum. Mutat. 2, 229–234 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Keightley, P. D. & Eyre-Walker, A. Deleterious mutations and the evolution of sex. Science 290, 331–333 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Haag-Liautard, C. et al. Direct estimation of per nucleotide and genomic deleterious mutation rates in Drosophila. Nature 445, 82–85 (2007). This paper provides direct evidence that the deleterious mutation rate is high in D. melanogaster.

    Article  CAS  PubMed  Google Scholar 

  • Haddrill, P. R., Charlesworth, B., Halligan, D. L. & Andolfatto, P. Patterns of intron sequence evolution in Drosophila are dependent upon length and GC content. Genome Biol. 6, R67 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Katzman, S. et al. Human genome ultraconserved elements are ultraselected. Science 317, 915 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Parmley, J. L., Chamary, J. V. & Hurst, L. D. Evidence for purifying selection against synonymous mutations in mammalian exonic splicing enhancers. Mol. Biol. Evol. 23, 301–309 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Keightley, P. D., Kryukov, G. V., Sunyaev, S., Halligan, D. L. & Gaffney, D. J. Evolutionary constraints in conserved nongenic sequences of mammals. Genome Res. 15, 1373–1378 (2006).

    Article  CAS  Google Scholar 

  • Asthana, S. et al. Widely distributed noncoding purifying selection in the human genome. Proc. Natl Acad. Sci. USA 104, 12410–12415 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright, S. & Andolfatto, P. The impact of natural selection on the genome: emerging patterns in Drosophila and Arabidopsis. Annu. Rev. Ecol. Evol. Syst. 39, 193–213 (2008).

    Article  Google Scholar 

  • Eyre-Walker, A., Woolfit, M. & Phelps, T. The distribution of fitness effects of new deleterious amino acid mutations in humans. Genetics 173, 891–900 (2006). The authors make sophisticated use of population genetics theory to estimate the distribution (rather than the average value) of selection coefficients of deleterious mutations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyko, A. R. et al. Assessing the evolutionary impact of amino acid mutations in the human genome. PLoS Genet. 4, e1000083 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Keightley, P. & Halligan, D. Analysis and implications of mutational variation. Genetica 136, 359–369 (2009).

    Article  PubMed  Google Scholar 

  • Loewe, L., Charlesworth, B., Bartolomé, C. & Nöel, V. Estimating selection on nonsynonymous mutations. Genetics 172, 1079–1092 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loewe, L. & Charlesworth, B. Inferring the distribution of mutational effects on fitness in Drosophila. Biol. Lett. 2, 426–430 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  • Keightley, P. & Eyre-Walker, A. Joint inference of the distribution of fitness effects of deleterious mutations and population demography based on nucleotide polymorphism frequencies. Genetics 177, 2251–2261 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bubb, K. L. et al. Scan of human genome reveals no new loci under ancient balancing selection. Genetics 173, 2165–2177 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asthana, S., Schmidt, S. & Sunyaev, S. A limited role for balancing selection. Trends Genet. 21, 30–32 (2005). References 136 and 137 give evidence that overdominance is not common.

    Article  CAS  PubMed  Google Scholar 

  • Fumagalli, M. et al. Widespread balancing selection and pathogen-driven selection at blood group antigen genes. Genome Res. 19, 199–212 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calafell, F. et al. Evolutionary dynamics of the human ABO gene. Hum. Genet. 124, 123–135 (2008).

    Article  PubMed  Google Scholar 

  • Moss, D., Arce, S., Otoshi, C. & Moss, S. Inbreeding effects on hatchery and growout performance of Pacific white shrimp, Penaeus (Litopenaeus) vannamei. J. World Aquacult. Soc. 39, 467–476 (2008).

    Article  Google Scholar 

  • Richards, C. M., Church, S. & McCauley, D. E. The influence of population size and isolation on gene flow by pollen in Silene alba. Evolution 53, 63–73 (1999).

    Article  PubMed  Google Scholar 

  • Mori, K., Saito, Y., Sakagami, T. & Sahara, K. Inbreeding depression of female fecundity by genetic factors retained in natural populations of a male-haploid social mite (Acari: Tetranychidae). Exp. Appl. Acarol. 39, 15–23 (2005).

    Article  Google Scholar 

  • Schneller, J. J. & Holderegger, R. Vigor and survival of inbred and outbred progeny of Athyrium filix-femina. Int. J. Plant Sci. 158, 79–82 (1997).

    Article  Google Scholar 

  • Klekowski, E. J. Genetic load in Osmunda regalis populations. Am. J. Bot. 60, 146–154 (1973). The studies reported in references 143 and 144 show evidence for recessive large-effect deleterious mutations in natural populations of ferns, a type of organism that should be more widely used in such studies.

    Article  Google Scholar 

  • Keller, L. F. Inbreeding and its fitness effects in an insular population of song sparrows (Melospiza melodia). Evolution 52, 240–250 (1998).

    PubMed  Google Scholar 

  • Ritland, K. Inferences about inbreeding depression based upon changes of the inbreeding coefficient. Evolution 44, 1230–1241 (1990).

    Article  PubMed  Google Scholar 

  • Liautard, C. & Sundstrom, L. Estimation of individual level of inbreeding using relatedness measures in haplodiploids. Insectes Soc. 52, 323–326 (2005).

    Article  Google Scholar 

  • Camara, M., Evans, S. & Langdon, C. Parental relatedness and survival of Pacific oysters from a naturalized population. J. Shellfish Res. 27, 323–336 (2008).

    Article  Google Scholar 

  • Herlihy, C. R. & Eckert, C. G. Genetic cost of reproductive assurance in a self-fertilizing plant. Nature 416, 320–323 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Bierne, N., S. Launey, Y. Naciri-Graven & Bonhomme, F. Early effect of inbreeding as revealed by microsatellite analyses on Ostrea edulis larvae. Genetics 148, 1893–1906 (2000).

    Article  Google Scholar 

  • Launey, S. & Hedgecock, D. High genetic load in the pacific oyster Crassostrea gigas. Genetics 159, 255–265 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu, Y.-B. & Ritland, K. Evidence for the partial dominance of viability genes in Mimulus guttatus. Genetics 136, 323–331 (1993).

    Article  Google Scholar 

  • Fu, Y.-B. & Ritland, K. On estimating the linkage of marker genes to viability genes controlling inbreeding depression. Theor. Appl. Genet. 88, 925–932 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Haag, C. & Ebert, D. D. Genotypic selection in Daphnia populations consisting of inbred sibships. J. Evol. Biol. 20, 881–891 (2007).

    Article  CAS  PubMed  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4