A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://doi.org/10.1038/nrg2101 below:

Genetic determinants of cancer metastasis

  • Weigelt, B., Peterse, J. L. & van 't Veer, L. J. Breast cancer metastasis: markers and models. Nature Rev. Cancer 5, 591–602 (2005).

    Article  CAS  Google Scholar 

  • van de Wouw, A. J., Jansen, R. L., Speel, E. J. & Hillen, H. F. The unknown biology of the unknown primary tumour: a literature review. Ann. Oncol. 14, 191–6 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Weiss, L. Metastasis of cancer: a conceptual history from antiquity to the 1990s. Cancer Metastasis Rev. 19, 193–383 (2000).

    Article  Google Scholar 

  • Norton, L. & Massagué, J. Is cancer a disease of self-seeding? Nature Med. 12, 875–878 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Christofori, G. New signals from the invasive front. Nature 441, 444–450 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Fidler, I. J. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nature Rev. Cancer 3, 453–458 (2003).

    Article  CAS  Google Scholar 

  • Gupta, G. P. & Massagué, J. Cancer metastasis: building a framework. Cell 127, 679–695 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Mundy, G. R. Metastasis to bone: causes, consequences and therapeutic opportunities. Nature Rev. Cancer 2, 584–593 (2002).

    Article  CAS  Google Scholar 

  • Steeg, P. S. Tumor metastasis: mechanistic insights and clinical challenges. Nature Med. 12, 895–904 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Capasso, L. L. Antiquity of cancer. Int. J. Cancer 113, 2–13 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Paget, S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 8, 98–101 (1989).

    CAS  PubMed  Google Scholar 

  • Ewing, J. Neoplastic Diseases edn 6 (Saunders, Philadelphia, 1928).

    Google Scholar 

  • Fisher, B. & Fisher, E. R. The interrelationship of hematogenous and lymphatic tumor cell dissemination. Surg. Gynecol. Obstet. 122, 791–798 (1966).

    CAS  PubMed  Google Scholar 

  • Crespi, B. & Summers, K. Evolutionary biology of cancer. Trends Ecol. Evol. 20, 545–552 (2005).

    Article  PubMed  Google Scholar 

  • Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).

    Article  CAS  PubMed  Google Scholar 

  • Fidler, I. J. Selection of successive tumour lines for metastasis. Nature New Biol. 242, 148–149 (1973).

    Article  CAS  PubMed  Google Scholar 

  • Fidler, I. J. & Kripke, M. L. Metastasis results from preexisting variant cells within a malignant tumor. Science 197, 893–895 (1977).

    Article  CAS  PubMed  Google Scholar 

  • Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Vogelstein, B. & Kinzler, K. W. Cancer genes and the pathways they control. Nature Med. 10, 789–799 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Bernards, R. & Weinberg, R. A. A progression puzzle. Nature 418, 823 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Alizadeh, A. A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Golub, T. R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Ramaswamy, S., Ross, K. N., Lander, E. S. & Golub, T. R. A molecular signature of metastasis in primary solid tumors. Nature Genet. 33, 49–54 (2003).

    Article  CAS  PubMed  Google Scholar 

  • van de Vijver, M. J. et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347, 1999–2009 (2002).

    Article  CAS  PubMed  Google Scholar 

  • van 't Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Kerbel, R. S., Waghorne, C., Korczak, B., Lagarde, A. & Breitman, M. L. Clonal dominance of primary tumours by metastatic cells: genetic analysis and biological implications. Cancer Surv. 7, 597–629 (1988).

    CAS  PubMed  Google Scholar 

  • Steeg, P. S. Metastasis suppressors alter the signal transduction of cancer cells. Nature Rev. Cancer 3, 55–63 (2003).

    Article  CAS  Google Scholar 

  • Schmidt-Kittler, O. et al. From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc. Natl Acad. Sci. USA 100, 7737–7742 (2003). A cytogenetic analysis of single tumour cells from the bone marrow of breast cancer patients, leading to the suggestion that metastatic cells disseminate early and evolve independently of their primary tumour.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schardt, J. A. et al. Genomic analysis of single cytokeratin-positive cells from bone marrow reveals early mutational events in breast cancer. Cancer Cell 8, 227–239 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Huber, M. A., Kraut, N. & Beug, H. Molecular requirements for epithelial–mesenchymal transition during tumor progression. Curr. Opin. Cell Biol. 17, 548–558 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Thiery, J. P. Epithelial–mesenchymal transitions in tumour progression. Nature Rev. Cancer 2, 442–454 (2002).

    Article  CAS  Google Scholar 

  • Stupack, D. G. et al. Potentiation of neuroblastoma metastasis by loss of caspase-8. Nature 439, 95–99 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Gupta, G. P. et al. Mediators of vascular remodelling co-opted for metastatic extravasation. Nature 446, 765–770 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Minn, A. J. et al. Genes that mediate breast cancer metastasis to lung. Nature 436, 518–524 (2005). References 36 and 37 integrate in vivo selection with clinical validation to identify mediators of lung-specific metastasis, linking aggressive primary tumorigenesis to organ-specific colonization.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minn, A. J. et al. Lung metastasis genes couple breast tumor size and metastatic spread. Proc. Natl Acad. Sci. USA 104, 6740–6745 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards, F. M. et al. Germline E-cadherin gene (CDH1) mutations predispose to familial gastric cancer and colorectal cancer. Hum. Mol. Genet. 8, 607–610 (1999). This report links the inactivation of a developmentally regulated cell-adhesion gene with predisposition to cancer progression.

    Article  CAS  PubMed  Google Scholar 

  • Cavallaro, U. & Christofori, G. Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nature Rev. Cancer 4, 118–132 (2004).

    Article  CAS  Google Scholar 

  • Kapitanovic, S. et al. nm23-H1 expression and loss of heterozygosity in colon adenocarcinoma. J. Clin. Pathol. 57, 1312–1318 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, M. et al. Comparative oncogenomics identifies NEDD9 as a melanoma metastasis gene. Cell 125, 1269–1281 (2006). An integrative approach that uses a mouse model to filter human aCGH data and characterize chromosomal aberrations that are associated with melanoma metastasis.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, E. W. & Newgreen, D. F. Carcinoma invasion and metastasis: a role for epithelial–mesenchymal transition? Cancer Res. 65, 5991–5995 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Tarin, D. The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Res. 65, 5996–6000 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Kaelin, W. G. The von Hippel–Lindau tumor suppressor protein: roles in cancer and oxygen sensing. Cold Spring Harb. Symp. Quant. Biol. 70, 159–166 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Staller, P. et al. Chemokine receptor CXCR4 downregulated by von Hippel–Lindau tumour suppressor pVHL. Nature 425, 307–311 (2003). An example of how somatic mutations that are acquired during tumour progression can affect the expression of a metastasis-specific gene.

    Article  CAS  PubMed  Google Scholar 

  • Kang, Y. et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537–549 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Muller, A. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56 (2001). This paper describes how non-immunological tumour cells can express the chemokine receptor CXCR4 and respond to a chemokine source to settle in certain organs.

    Article  CAS  PubMed  Google Scholar 

  • Feinberg, A. P., Ohlsson, R. & Henikoff, S. The epigenetic progenitor origin of human cancer. Nature Rev. Genet. 7, 21–33 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Baylin, S. B. & Ohm, J. E. Epigenetic gene silencing in cancer — a mechanism for early oncogenic pathway addiction? Nature Rev. Cancer 6, 107–116 (2006).

    Article  CAS  Google Scholar 

  • Kleer, C. G. et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc. Natl Acad. Sci. USA 100, 11606–11611 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varambally, S. et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419, 624–629 (2002). This paper reports the deregulation of stem-cell epigenetic regulators during metastatic progression.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. H. et al. Transcriptional regulation of a metastasis suppressor gene by Tip60 and b-catenin complexes. Nature 434, 921–926 (2005). A study that links the progenitor WNT/β-catenin pathway to the transcriptional repression of a metastasis suppressor gene.

    Article  CAS  PubMed  Google Scholar 

  • Bandyopadhyay, S. et al. Interaction of KAI1 on tumor cells with DARC on vascular endothelium leads to metastasis suppression. Nature Med. 12, 933–938 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Frank, S. A. Genetic predisposition to cancer — insights from population genetics. Nature Rev. Genet. 5, 764–772 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Pharoah, P. D. et al. Polygenic susceptibility to breast cancer and implications for prevention. Nature Genet. 31, 33–36 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Carey, L. A. et al. Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295, 2492–2502 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Lifsted, T. et al. Identification of inbred mouse strains harboring genetic modifiers of mammary tumor age of onset and metastatic progression. Int. J. Cancer 77, 640–644 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Park, Y. G. et al. Comparative sequence analysis in eight inbred strains of the metastasis modifier QTL candidate gene Brms1. Mamm. Genome 13, 289–292 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Park, Y. G. et al. SIPA1 is a candidate for underlying the metastasis efficiency modifier locus MTES1. Nature Genet. 37, 1055–1062 (2005). The first experimental identification of a polymorphism that affects metastatic potential in mice.

    Article  CAS  PubMed  Google Scholar 

  • Crawford, N. P. et al. Germline polymorphisms in SIPA1 are associated with metastasis and other indicators of poor prognosis in breast cancer. Breast Cancer Res. 8, R16 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiratsuka, S., Watanabe, A., Aburatani, H. & Maru, Y. Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nature Cell Biol. 8, 1369–1375 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Gupta, P. B. et al. The melanocyte differentiation program predisposes to metastasis after neoplastic transformation. Nature Genet. 37, 1047–1054 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Yu, Y. et al. Expression profiling identifies the cytoskeletal organizer ezrin and the developmental homeoprotein SIX-1 as key metastatic regulators. Nature Med. 10, 175–181 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Yang, J. et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117, 927–939 (2004). A gene-expression analysis that identified a role for a transcriptional regulator of embryo development during mouse mammary tumour intravasation.

    Article  CAS  PubMed  Google Scholar 

  • de Visser, K. E., Eichten, A. & Coussens, L. M. Paradoxical roles of the immune system during cancer development. Nature Rev. Cancer 6, 24–37 (2006).

    Article  CAS  Google Scholar 

  • Karin, M. Nuclear factor-kB in cancer development and progression. Nature 441, 431–436 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Park, B. K. et al. NF-kB in breast cancer cells promotes osteolytic bone metastasis by inducing osteoclastogenesis via GM-CSF. Nature Med. 13, 62–69 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Luo, J. L. et al. Nuclear cytokine-activated IKKα controls prostate cancer metastasis by repressing Maspin. Nature 18 March 2007 (doi:10.1038/nature05656).

    Article  CAS  PubMed  Google Scholar 

  • Kang, Y. et al. Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc. Natl Acad. Sci. USA 102, 13909–13914 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsson, A. K., Dimberg, A., Kreuger, J. & Claesson-Welsh, L. VEGF receptor signalling — in control of vascular function. Nature Rev. Mol. Cell Biol. 7, 359–371 (2006).

    Article  CAS  Google Scholar 

  • Weis, S., Cui, J., Barnes, L. & Cheresh, D. Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. J. Cell Biol. 167, 223–229 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan, R. N. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820–827 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bierie, B. & Moses, H. L. Tumour microenvironment: TGFβ: the molecular Jekyll and Hyde of cancer. Nature Rev. Cancer 6, 506–520 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Siegel, P. M. & Massagué, J. Cytostatic and apoptotic actions of TGFβ in homeostasis and cancer. Nature Rev. Cancer 3, 807–821 (2003).

    Article  CAS  Google Scholar 

  • Carmeliet, P. Angiogenesis in life, disease and medicine. Nature 438, 932–936 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet, P. & Jain, R. K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Debnath, J. & Brugge, J. S. Modelling glandular epithelial cancers in three-dimensional cultures. Nature Rev. Cancer 5, 675–688 (2005).

    Article  CAS  Google Scholar 

  • Van Dyke, T. & Jacks, T. Cancer modeling in the modern era: progress and challenges. Cell 108, 135–144 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Guy, C. T., Cardiff, R. D. & Muller, W. J. Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol. Cell. Biol. 12, 954–961 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gingrich, J. R. et al. Metastatic prostate cancer in a transgenic mouse. Cancer Res. 56, 4096–4102 (1996).

    CAS  PubMed  Google Scholar 

  • Jackson, E. L. et al. The differential effects of mutant p53 alleles on advanced murine lung cancer. Cancer Res. 65, 10280–10288 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Kim, C. F. et al. Mouse models of human non-small-cell lung cancer: raising the bar. Cold Spring Harb. Symp. Quant. Biol. 70, 241–250 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Nathoo, N., Toms, S. A. & Barnett, G. H. Metastases to the brain: current management perspectives. Expert Rev. Neurother. 4, 633–640 (2004).

    Article  PubMed  Google Scholar 

  • Douma, S. et al. Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB. Nature 430, 1034–1039 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Brumby, A. M. & Richardson, H. E. Using Drosophila melanogaster to map human cancer pathways. Nature Rev. Cancer 5, 626–639 (2005).

    Article  CAS  Google Scholar 

  • Woodhouse, E. C. et al. Drosophila screening model for metastasis: Semaphorin 5c is required for l(2)gl cancer phenotype. Proc. Natl Acad. Sci. USA 100, 11463–11468 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pagliarini, R. A. & Xu, T. A genetic screen in Drosophila for metastatic behavior. Science 302, 1227–1231 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Dupuy, A. J., Akagi, K., Largaespada, D. A., Copeland, N. G. & Jenkins, N. A. Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system. Nature 436, 221–226 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Collier, L. S., Carlson, C. M., Ravimohan, S., Dupuy, A. J. & Largaespada, D. A. Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse. Nature 436, 272–276 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Dickins, R. A. et al. Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nature Genet. 37, 1289–1295 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Ellsworth, R. E. et al. Allelic imbalance in primary breast carcinomas and metastatic tumors of the axillary lymph nodes. Mol. Cancer Res. 3, 71–77 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Sebat, J. et al. Large-scale copy number polymorphism in the human genome. Science 305, 525–528 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Laird, P. W. The power and the promise of DNA methylation markers. Nature Rev. Cancer 3, 253–266 (2003).

    Article  CAS  Google Scholar 

  • Lu, J. et al. MicroRNA expression profiles classify human cancers. Nature 435, 834–838 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Varambally, S. et al. Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell 8, 393–406 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Sjoblom, T. et al. The consensus coding sequences of human breast and colorectal cancers. Science 314, 268–274 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y. et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365, 671–679 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Fan, C. et al. Concordance among gene-expression-based predictors for breast cancer. N. Engl. J. Med. 355, 560–569 (2006). An analysis of five prominent breast cancer gene signatures that shows that, despite little overlap in gene identity, these signatures can classify similar subsets of patient who are at risk for metastatic relapse.

    Article  CAS  PubMed  Google Scholar 

  • Massagué, J. Sorting out breast-cancer gene signatures. N. Engl. J. Med. 356, 294–297 (2007).

    Article  PubMed  Google Scholar 

  • Chang, H. Y. et al. Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc. Natl Acad. Sci. USA 102, 3738–3743 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, R. et al. The prognostic role of a gene signature from tumorigenic breast-cancer cells. N. Engl. J. Med. 356, 217–226 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Rhodes, D. R. & Chinnaiyan, A. M. Integrative analysis of the cancer transcriptome. Nature Genet. 37, S31–S37 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Luzzi, K. J. et al. Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am. J. Pathol. 153, 865–873 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fidler, I. J. & Nicolson, G. L. Fate of recirculating B16 melanoma metastatic variant cells in parabiotic syngeneic recipients. J. Natl Cancer Inst. 58, 1867–1872 (1977).

    Article  CAS  PubMed  Google Scholar 

  • Khanna, C. & Hunter, K. Modeling metastasis in vivo. Carcinogenesis 26, 513–523 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Clark, E. A., Golub, T. R., Lander, E. S. & Hynes, R. O. Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406, 532–535 (2000). The first study to combine genomic profiling and in vivo selection for the identification of metastasis genes.

    Article  CAS  PubMed  Google Scholar 

  • Khanna, C. et al. The membrane–cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nature Med. 10, 182–186 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Minn, A. J. et al. Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J. Clin. Invest. 115, 44–55 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinkel, D. & Albertson, D. G. Comparative genomic hybridization. Annu. Rev. Genomics Hum. Genet. 6, 331–354 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Adler, A. S. et al. Genetic regulators of large-scale transcriptional signatures in cancer. Nature Genet. 38, 421–430 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Chin, K. et al. Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10, 529–541 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Zender, L. et al. Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell 125, 1253–1267 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sweet-Cordero, A. et al. An oncogenic KRAS2 expression signature identified by cross-species gene-expression analysis. Nature Genet. 37, 48–55 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Ellwood-Yen, K. et al. Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 4, 223–238 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Tarin, D., Vass, A. C., Kettlewell, M. G. & Price, J. E. Absence of metastatic sequelae during long-term treatment of malignant ascites by peritoneo-venous shunting. A clinico-pathological report. Invasion Metastasis 4, 1–12 (1984).

    CAS  PubMed  Google Scholar 

  • Joyce, J. A. Therapeutic targeting of the tumor microenvironment. Cancer Cell 7, 513–520 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Nierodzik, M. L. & Karpatkin, S. Thrombin induces tumor growth, metastasis, and angiogenesis: evidence for a thrombin-regulated dormant tumor phenotype. Cancer Cell 10, 355–362 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Sorlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl Acad. Sci. USA 98, 10869–10874 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paik, S. et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 351, 2817–2826 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Chang, H. Y. et al. Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol. 2, e7 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chi, J. T. et al. Gene expression programs in response to hypoxia: cell type specificity and prognostic significance in human cancers. PLoS Med. 3, e47 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bild, A. H. et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439, 353–357 (2006).

    Article  CAS  PubMed  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4