A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://doi.org/10.1038/nrg1674 below:

Synergy between sequence and size in Large-scale genomics

  • Boivin, A., Vendrely, R. & Vendrely, C. L'acide désoxyribonucléique du noyau cellulaire dépositaire des caractères héréditaires; arguments d'ordre analytique. C. R. Acad. Sci. 226, 1061–1063 (1948) (in French).

    CAS  Google Scholar 

  • Mirsky, A. E. & Ris, H. The desoxyribonucleic acid content of animal cells and its evolutionary significance. J. Gen. Physiol. 34, 451–462 (1951).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas, C. A. The genetic organization of chromosomes. Annu. Rev. Genet. 5, 237–256 (1971).

    Article  CAS  PubMed  Google Scholar 

  • Ohno, S. in Evolution of Genetic Systems (ed. Smith, H. H.) 366–370 (Gordon and Breach, New York, 1972).

    Google Scholar 

  • Comings, D. E. The structure and function of chromatin. Adv. Hum. Genet. 3, 237–431 (1972).

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith, T. Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. J. Cell Sci. 34, 247–278 (1978).

    CAS  PubMed  Google Scholar 

  • Gilbert, W. Why genes in pieces? Nature 271, 501 (1978).

    Article  CAS  PubMed  Google Scholar 

  • Doolittle, W. F. & Sapienza, C. Selfish genes, the phenotype paradigm and genome evolution. Nature 284, 601–603 (1980).

    Article  CAS  PubMed  Google Scholar 

  • Orgel, L. E. & Crick, F. H. C. Selfish DNA: the ultimate parasite. Nature 284, 604–607 (1980).

    Article  CAS  PubMed  Google Scholar 

  • Gregory, T. R. in The Evolution of the Genome (ed. Gregory, T. R.) 3–87 (Elsevier, San Diego, 2005). The author provides a comprehensive recent review of the evolution of genome size in animals.

    Book  Google Scholar 

  • Bennett, M. D. & Leitch, I. J. in The Evolution of the Genome (ed. Gregory, T. R.) 89–162 (Elsevier, San Diego, 2005). The authors provide a comprehensive recent review of the evolution of genome size in plants.

    Book  Google Scholar 

  • Filipski, A. & Kumar, S. in The Evolution of the Genome (ed. Gregory, T. R.) 521–583 (Elsevier, San Diego, 2005).

    Book  Google Scholar 

  • Gregory, T. R. Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biol. Rev. 76, 65–101 (2001). This article outlines the key concepts in the study of the C-value enigma and the main theories that have been proposed to explain it.

    Article  CAS  PubMed  Google Scholar 

  • Gregory, T. R. The bigger the C-value, the larger the cell: genome size and red blood cell size in vertebrates. Blood Cells Mol. Dis. 27, 830–843 (2001).

    CAS  Google Scholar 

  • Gregory, T. R. The C-value enigma in plants and animals: a review of parallels and an appeal for partnership. Ann. Bot. 95, 133–146 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001). This paper provides the first whole-scale view of the contents and characteristics of a relatively large animal genome.

  • Kidwell, M. G. in The Evolution of the Genome (ed. Gregory, T. R.) 165–221 (Elsevier, San Diego, 2005).

    Book  Google Scholar 

  • Kidwell, M. G. & Lisch, D. R. Transposable elements and host genome evolution. Trends Ecol. Evol. 15, 95–99 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Kidwell, M. G. & Lisch, D. R. Transposable elements, parasitic DNA, and genome evolution. Evolution 55, 1–24 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Brookfield, J. F. Y. The ecology of the genome — mobile DNA elements and their hosts. Nature Rev. Genet. 6, 128–136 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Furano, A. V., Duvernell, D. D. & Boissinot, S. L1 (LINE-1) retrotransposon diversity differs dramatically between mammals and fish. Trends Genet. 20, 9–14 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Gregory, T. R. in The Evolution of the Genome (ed. Gregory, T. R.) 679–729 (Elsevier, San Diego, 2005). This chapter places emerging knowledge of genome evolution in the context of an expanded evolutionary theory, and highlights some key 'non-standard' genetic processes that have been important in various major evolutionary transitions.

    Book  Google Scholar 

  • Brookfield, J. F. Y. Mobile DNAs: the poacher turned gamekeeper. Curr. Biol. 13, R846–R847 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Jordan, I. K., Rogozin, I. B., Glazko, G. V. & Koonin, E. V. Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet. 19, 68–72 (2003). The authors suggest a significant role for formerly parasitic elements in the evolution and function of complex genomes.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, L. et al. Transposition of hAT elements links transposable elements and V(D)J recombination. Nature 432, 995–1001 (2004). This article provides intriguing evidence for a link between formerly parasitic genomic elements and the evolution of the adaptive immune system of vertebrates.

    Article  CAS  PubMed  Google Scholar 

  • Kimura, R. H., Choudary, P. V. & Schmid, C. W. Silk worm Bm1 SINE RNA increases following cellular insults. Nucleic Acids Res. 27, 3380–3387 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kidwell, M. G. Transposable elements and the evolution of genome size in eukaryotes. Genetica 115, 49–63 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Lynch, M. & Conery, J. S. The origins of genome complexity. Science 302, 1401–1404 (2003).

    Article  CAS  PubMed  Google Scholar 

  • SanMiguel, P. & Bennetzen, J. L. Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann. Bot. 82 (Suppl. A), 37–44 (1998). This paper describes the extraordinary influence that transposable elements can have on the evolution of genome size, even over relatively short timescales.

    Article  CAS  Google Scholar 

  • Bennett, E. A., Coleman, L. E., Tsui, C., Pittard, W. S. & Devine, S. E. Natural genetic variation caused by transposable elements in humans. Genetics 168, 933–951 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mouse Genome Sequencing Consortium. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002).

  • Aparicio, S. et al. Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297, 1301–1310 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Jaillon, O. et al. Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431, 946–957 (2004). This article provides some of the most compelling evidence so far that a complete round of genome duplication occurred in an early ancestor of the bony fishes.

    Article  PubMed  Google Scholar 

  • Kapitonov, V. V. & Jurka, J. Molecular paleontology of transposable elements in the Drosophila melanogaster genome. Proc. Natl Acad. Sci. USA 100, 6569–6574 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • International Chicken Genome Sequencing Consortium. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432, 695–716 (2004).

  • Rat Genome Sequencing Project Consortium. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428, 493–521 (2004).

  • Kumar, A. & Bennetzen, J. L. Plant retrotransposons. Annu. Rev. Genet. 33, 479–532 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Xia, Q. et al. A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science 306, 1937–1940 (2004).

    Article  PubMed  Google Scholar 

  • C. elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012–2018 (1998).

  • Kim, J. M. et al. Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res. 8, 464–478 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Volff, J. -N., Lehrach, H., Reinhardt, R. & Chourrout, D. Retroelement dynamics and a novel type of chordate retrovirus-like element in the miniature genome of the tunicate Oikopleura dioica. Mol. Biol. Evol. 21, 2022–2033 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Gardner, M. J. et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419, 498–511 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Katinka, M. D. et al. Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414, 450–453 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Dietrich, F. S. et al. The Ashbya gosypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science 304, 304–307 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Galagan, J. E. et al. The genome sequence of the filamentous fungus Neurospora crassa. Nature 422, 859–868 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Harrison, P. M. et al. Molecular fossils in the human genome: identification and analysis of the pseudogenes in chromosomes 21 and 22. Genome Res. 12, 272–280 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood, V., Gwilliam, R. & Rajandream, M. -A. The genome sequence of Schizosaccharomyces pombe. Nature 415, 871–880 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Zbodnov, E. M. et al. Comparative genome and proteome analysis of Anopheles gambiae and Drosophila melanogaster. Science 298, 149–159 (2002).

    Article  CAS  Google Scholar 

  • Petrov, D. A. Evolution of genome size: new approaches to an old problem. Trends Genet. 17, 23–28 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Gregory, T. R. Insertion–deletion biases and the evolution of genome size. Gene 324, 15–34 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Z., Carriero, N. & Gerstein, M. Comparative analysis of processed pseudogenes in the mouse and human genomes. Trends Genet. 20, 62–67 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Wolfe, K. H. & Shields, D. C. Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387, 708–713 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Ochman, H., Daubin, V. & Lerat, E. A bunch of fun-guys: the whole-genome view of yeast evolution. Trends Genet. 21, 1–3 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Dujon, B. et al. Genome evolution in yeasts. Nature 430, 35–44 (2004).

    Article  PubMed  Google Scholar 

  • Van de Peer, Y. & Meyer, A. in The Evolution of the Genome (ed. Gregory, T. R.) 329–368 (Elsevier, San Diego, 2005).

    Book  Google Scholar 

  • Yu, J. et al. The genomes of Oryza sativa: a history of duplications. PLoS Biol. 3, 267–281 (2005).

    Article  CAS  Google Scholar 

  • Simillion, C., Vanepoele, K., Van Montagu, M. C. E., Zabeau, M. & Van de Peer, Y. The hidden duplication past of Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 99, 13627–13632 (2002). The authors dicuss the ancient genome duplication that occurred in this tiny-genomed flowering plant; this evidence raises the possibility that all angiosperms have polyploidy in their ancestry.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tate, J. A., Soltis, D. E. & Soltis, P. S. in The Evolution of the Genome (ed. Gregory, T. R.) 371–426 (Elsevier, San Diego, 2005).

    Book  Google Scholar 

  • Ohno, S. Evolution by Gene Duplication (Springer, New York, 1970).

    Book  Google Scholar 

  • McLysaght, A., Hokamp, K. & Wolfe, K. H. Extensive genomic duplication during early chordate evolution. Nature Genet. 31, 200–204 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Hughes, A. L. & Piontkivska, H. DNA repeat arrays in chicken and human genomes and the adaptive evolution of avian genome size. BMC Evol. Biol. 5, 12 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burt, D. W. Origin and evolution of avian minichromosomes. Cytogenet. Genome Res. 96, 97–112 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Gregory, T. R. A bird's-eye view of the C-value enigma: genome size, cell size, and metabolic rate in the class Aves. Evolution 56, 121–130 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Adams, M. D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185–2195 (2000).

    Article  PubMed  Google Scholar 

  • Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000).

  • Bennett, M. D., Leitch, I. J., Price, H. J. & Johnston, J. S. Comparisons with Caenorhabditis (100 Mb) and Drosophila (175 Mb) using flow cytometry show genome size in Arabidopsis to be 157 Mb and thus 25 % larger than the Arabidopsis Genome Initiative estimate of 125 Mb. Ann. Bot. 91, 547–557 (2003). This paper demonstrates the crucial importance of using best-practice techniques in the analysis of genome size, and highlights the potential problems involved in estimating genome size by using only sequence data.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes, A. L. Adaptive Evolution of Genes and Genomes (Oxford Univ. Press, Oxford, UK, 1999).

    Google Scholar 

  • Vinogradov, A. E. Testing genome complexity. Science 304, 389–390 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Petrov, D. A. Mutational equilibrium model of genome size evolution. Theor. Popul. Biol. 61, 533–546 (2002).

    Article  Google Scholar 

  • Pryer, K. M., Schneider, H., Zimmer, E. A. & Banks, J. A. Deciding among green plants for whole genome studies. Trends Plant Sci. 7, 550–554 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Evans, J. D. & Gundersen-Rindal, D. Beenomes to Bombyx: future directions in applied insect genomics. Genome Biol. 4, 107 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  • Garner, T. W. J. Genome size and microsatellites: the effect of nuclear size on amplification potential. Genome 45, 212–215 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Fay, M. F., Cowan, R. S. & Leitch, I. J. The effects of DNA content (C-value) on the quality and utility of AFLP fingerprints. Ann. Bot. 95, 237–246 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett, M. D. & Leitch, I. J. Nuclear DNA amounts in angiosperms: progress, problems and prospects. Ann. Bot. 95, 45–90 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pennisi, E. Keeping genome databases clean and up to date. Science 286, 447–450 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Hadley, C. Righting the wrongs. EMBO Rep. 4, 829–831 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilhar, B., Greilhuber, J., Koce, J. D., Temsch, E. M. & Dermastia, M. Plant genome size measurement with DNA image cytometry. Ann. Bot. 87, 719–728 (2001).

    Article  CAS  Google Scholar 

  • Hardie, D. C., Gregory, T. R. & Hebert, P. D. N. From pixels to picograms: a beginners' guide to genome quantification by Feulgen image analysis densitometry. J. Histochem. Cytochem. 50, 735–749 (2002).

    Article  CAS  PubMed  Google Scholar 

  • DeSalle, R., Gregory, T. R. & Johnston, J. S. Preparation of samples for comparative studies of arthropod chromosomes: visualization, in situ hybridization, and genome size estimation. Meth. Enzymol. 395, 460–488 (2005).

    Article  CAS  Google Scholar 

  • Dolezel, J. & Bartos, J. Plant DNA flow cytometry and estimation of nuclear genome size. Ann. Bot. 95, 99–110 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nóbrega, M. A., Zhu, Y., Plajzer-Frick, I., Afzal, V. & Rubin, E. M. Megabase deletions of gene deserts result in viable mice. Nature 431, 988–993 (2004).

    Article  CAS  PubMed  Google Scholar 

  • International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004).

  • Claverie, J. -M. What if there are only 30,000 human genes? Science 291, 1255–1257 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Betrán, E. & Long, M. Expansion of genome coding regions by acquisition of new genes. Genetica 115, 65–80 (2002).

    Article  PubMed  Google Scholar 

  • Hahn, M. W. & Wray, G. A. The G-value paradox. Evol. Dev. 4, 73–75 (2002).

    Article  PubMed  Google Scholar 

  • Gregory, T. R. & DeSalle, R. in The Evolution of the Genome (ed. Gregory, T. R.) 585–675 (Elsevier, San Diego, 2005).

    Book  Google Scholar 

  • Sparrow, A. H., Price, H. J. & Underbink, A. G. in Evolution of Genetic Systems (ed. Smith, H. H.) 451–494 (Gordon and Breach, New York, 1972).

    Google Scholar 

  • Devos, K. M., Brown, J. K. M. & Bennetzen, J. L. Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res. 12, 1075–1079 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennetzen, J. L.<, Ma, J. & Devos, K. M. Mechanisms of recent genome size variation in flowering plants. Ann. Bot. 95, 127–132 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orel, N. & Puchta, H. Differences in the processing of DNA ends in Arabidopsis thaliana and tobacco: possible implications for genome evolution. Plant Mol. Biol. 51, 523–531 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Filkowski, J., Kovalchuk, O. & Kovalchuk, I. Dissimilar mutation and recombination rates in Arabidopsis and tobacco. Plant Sci. 166, 265–272 (2004).

    Article  CAS  Google Scholar 

  • Taylor, J. S. & Raes, J. in The Evolution of the Genome (ed. Gregory, T. R.) 289–327 (Elsevier, San Diego, 2005).

    Book  Google Scholar 

  • Ohta, T. Population genetics of selfish DNA. Nature 292, 648–649 (1981).

    Article  CAS  PubMed  Google Scholar 

  • Hickey, D. A. Selfish DNA: a sexually-transmitted nuclear parasite. Genetics 101, 519–531 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Charlesworth, B. The population biology of transposable elements. Trends Ecol. Evol. 2, 21–23 (1987).

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth, B., Sniegowski, P. & Stephan, W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371, 215–220 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Promislow, D. E. L., Jordan, I. K. & McDonald, J. F. Genomic demography: a life-history analysis of transposable element evolution. Proc. R. Soc. Lond. B 266, 1555–1560 (1999).

    Article  CAS  Google Scholar 

  • Arkhipova, I. & Meselson, M. Transposable elements in sexual and ancient asexual taxa. Proc. Natl Acad. Sci. USA 97, 14473–14477 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatcher, M. J. Persistence of selfish genetic elements: population structure and conflict. Trends Ecol. Evol. 15, 271–277 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Schön, I. & Martens, K. Transposable elements and asexual reproduction. Trends. Evol. 15, 287–288 (2000).

    Article  Google Scholar 

  • Wendel, J. F., Cronn, R. C., Johnston, J. S. & Price, H. J. Feast and famine in plant genomes. Genetica 115, 37–47 (2002). The authors show that genome sizes can change both by increasing and decreasing, even within a narrow taxonomic range.

    Article  CAS  PubMed  Google Scholar 

  • Leitch, I. J., Soltis, D. E., Soltis, P. S. & Bennett, M. D. Evolution of DNA amounts across land plants (Embryophyta). Ann. Bot. 95, 207–217 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson, K. S. An attempt to reconstruct evolutionary changes in the cellular DNA content of lungfish. J. Exp. Zool. 180, 363–372 (1972).

    Article  Google Scholar 

  • Thomson, K. S. & Muraszko, K. Estimation of cell size and DNA content in fossil fishes and amphibians. J. Exp. Zool. 205, 315–320 (1978).

    Article  CAS  Google Scholar 

  • Conway Morris, S. & Harper, E. Genome size in conodonts (Chordata): inferred variations during 270 million years. Science 241, 1230–1232 (1988).

    Article  Google Scholar 

  • Masterson, J. Stomatal size in fossil plants: evidence for polyploidy in a majority of angiosperms. Science 264, 421–424 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Wong, G. K. -S., Passey, D. A., Huang, Y. -Z., Yang, Z. & Yu, J. Is 'junk' DNA mostly intron DNA? Genome Res. 10, 1672–1678 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong, G. K. -S., Passey, D. A. & Yu, J. Most of the human genome is transcribed. Genome Res. 11, 1975–1977 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Vinogradov, A. E. Intron–genome size relationship on a large evolutionary scale. J. Mol. Evol. 49, 376–384 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Moriyama, E. N., Petrov, D. A. & Hartl, D. L. Genome size and intron size in Drosophila. Mol. Biol. Evol. 15, 770–773 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Wendel, J. F. et al. Intron size and genome size in plants. Mol. Biol. Evol. 19, 2346–2352 (2002).

    Article  CAS  PubMed  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4