A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://doi.org/10.1038/nature07992 below:

Precise genome modification in the crop species Zea mays using zinc-finger nucleases

  • Puchta, H. Gene replacement by homologous recombination in plants. Plant Mol. Biol. 48, 173–182 (2002)

    Article  CAS  PubMed  Google Scholar 

  • Carroll, D. Progress and prospects: zinc-finger nucleases as gene therapy agents. Gene Ther. 15, 1463–1468 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iida, S. & Terada, R. Modification of endogenous natural genes by gene targeting in rice and other higher plants. Plant Mol. Biol. 59, 205–219 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y. G., Cha, J. & Chandrasegaran, S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl Acad. Sci. USA 93, 1156–1160 (1996)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Puchta, H. The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J. Exp. Bot. 56, 1–14 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Jasin, M. Genetic manipulation of genomes with rare-cutting endonucleases. Trends Genet. 12, 224–228 (1996)

    Article  CAS  PubMed  Google Scholar 

  • Bibikova, M. et al. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol. Cell. Biol. 21, 289–297 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porteus, M. H. & Baltimore, D. Chimeric nucleases stimulate gene targeting in human cells. Science 300, 763 (2003)

    Article  PubMed  Google Scholar 

  • Wright, D. A. et al. High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J. 44, 693–705 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Cai, C. Q. et al. Targeted transgene integration in plant cells using designed zinc finger nucleases. Plant Mol. Biol. 69, 699–709 (2008)

    Article  PubMed  Google Scholar 

  • Miller, J., McLachlan, A. D. & Klug, A. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J. 4, 1609–1614 (1985)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavletich, N. P. & Pabo, C. O. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 Å. Science 252, 809–817 (1991)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Isalan, M. & Choo, Y. Rapid, high-throughput engineering of sequence-specific zinc finger DNA-binding proteins. Methods Enzymol. 340, 593–609 (2001)

    Article  CAS  PubMed  Google Scholar 

  • Pabo, C. O., Peisach, E. & Grant, R. A. Design and selection of novel Cys2his2 zinc finger proteins. Annu. Rev. Biochem. 70, 313–340 (2001)

    Article  CAS  PubMed  Google Scholar 

  • Sun, Y. et al. Inositol 1,3,4,5,6-pentakisphosphate 2-kinase from maize: molecular and biochemical characterization. Plant Physiol. 144, 1278–1291 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raboy, V. Seeds for a better future: ‘low phytate’ grains help to overcome malnutrition and reduce pollution. Trends Plant Sci. 6, 458–462 (2001)

    Article  CAS  PubMed  Google Scholar 

  • Stevenson-Paulik, J. et al. Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases. Proc. Natl Acad. Sci. USA 102, 12612–12617 (2005)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Raboy, V. myo-Inositol-1,2,3,4,5,6-hexakisphosphate. Phytochemistry 64, 1033–1043 (2003)

    Article  CAS  PubMed  Google Scholar 

  • Urnov, F. D. et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435, 646–651 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Gordon-Kamm, W. J. et al. Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2, 603–618 (1990)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frame, B. R. et al. Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol. 129, 13–22 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doyon, Y. et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nature Biotechnol. 26, 702–708 (2008)

    Article  CAS  Google Scholar 

  • Bibikova, M. et al. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161, 1169–1175 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lloyd, A. et al. Targeted mutagenesis using zinc-finger nucleases in Arabidopsis . Proc. Natl Acad. Sci. USA 102, 2232–2237 (2005)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Porteus, M. H. Mammalian gene targeting with designed zinc finger nucleases. Mol. Ther. 13, 438–446 (2006)

    Article  CAS  PubMed  Google Scholar 

  • Moehle, E. A. et al. Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc. Natl Acad. Sci. USA 104, 3055–3060 (2007)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Lombardo, A. et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nature Biotechnol. 25, 1298–1306 (2007)

    Article  CAS  Google Scholar 

  • Perez, E. E. et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nature Biotechnol. 26, 808–816 (2008)

    Article  CAS  Google Scholar 

  • Wei, F. et al. Physical and genetic structure of the maize genome reflects its complex evolutionary history. PLoS Genet. 3, e123 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  • Maeder, M. L. et al. Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol. Cell 31, 294–301 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isalan, M., Klug, A. & Choo, Y. A rapid, generally applicable method to engineer zinc fingers illustrated by targeting the HIV-1 promoter. Nature Biotechnol. 19, 656–660 (2001)

    Article  CAS  Google Scholar 

  • Doyon, Y. et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nature Biotechnol. 26, 702–708 (2008)

    Article  CAS  Google Scholar 

  • Maddaloni, M. et al. The sequence of the zein regulatory gene opaque-2 (O2) of Zea mays . Nucleic Acids Res. 17, 7532 (1989)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang, J. et al. Stable antibody expression at therapeutic levels using the 2A peptide. Nature Biotechnol. 23, 584–590 (2005)

    Article  CAS  Google Scholar 

  • Miller, J. C. et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nature Biotechnol. 25, 778–785 (2007)

    Article  CAS  Google Scholar 

  • Christensen, A. H., Sharrock, R. A. & Quail, P. H. Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol. Biol. 18, 675–689 (1992)

    Article  CAS  PubMed  Google Scholar 

  • McElroy, D., Zhang, W., Cao, J. & Wu, R. Isolation of an efficient actin promoter for use in rice transformation. Plant Cell 2, 163–171 (1990)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wohlleben, W. et al. Nucleotide sequence of the phosphinothricin N-acetyltransferase gene from Streptomyces viridochromogenes Tü494 and its expression in Nicotiana tabacum . Gene 70, 25–37 (1988)

    Article  CAS  PubMed  Google Scholar 

  • Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: a Laboratory Manual 2nd edn (Cold Spring Harbor Laboratory Press, 1989)

    Google Scholar 

  • Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 - ΔΔ C t method. Methods 25, 402–408 (2001)

    Article  CAS  PubMed  Google Scholar 

  • Armstrong, C., Green, C. & Phillips, R. Development and availability of germplasm with high type II culture formation response. Maize Genet. Coop. News Lett. 65, 92–93 (1991)

    Google Scholar 

  • Petolino, J. F., Hopkins, N. L., Kosegi, B. D. & Skokut, M. Whisker-mediated transformation of embryogenic callus of maize. Plant Cell Rep. 19, 781–786 (2000)

    Article  CAS  PubMed  Google Scholar 

  • Skoglund, E., Carlsson, N.-G. & Sandberg, A.-S. Determination of isomers of inositol mono- to hexaphosphates in selected foods and intestinal contents using high-performance ion chromatography. J. Agric. Food Chem. 45, 431–436 (1997)

    Article  CAS  Google Scholar 

  • Stevenson-Paulik, J. et al. Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases. Proc. Natl Acad. Sci. USA 102, 12612–12617 (2005)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Buscher, B. A. P., van der Hoeven, R. A. M., Tjaden, U. R., Andersson, E. & Van der Greef, J. Analysis of inositol phosphates and derivatives using capillary zone electrophoresis-mass spectrometry. J. Chromatogr. A 712, 235–243 (1995)

    Article  CAS  Google Scholar 

  • Hsu, F.-F., Turk, J. & Gross, M. L. Structural distinction among inositol phosphate isomers using high-energy and low-energy collisional-activated dissociation tandem mass spectrometry with electrospray ionization. J. Mass Spectrom. 38, 447–457 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4