A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://doi.org/10.1007/s12035-009-8059-y below:

Protective Actions of the Vesicular Monoamine Transporter 2 (VMAT2) in Monoaminergic Neurons

  • Jahn R, Hell J, Maycox PR (1990) Synaptic vesicles: key organelles involved in neurotransmission. J Physiol (Paris) 84:128–133

    CAS  Google Scholar 

  • Trifaro JM, Vitale ML, Rodriguez Del Castillo A (1992) Cytoskeleton and molecular mechanisms in neurotransmitter release by neurosecretory cells. Eur J Pharmacol 225:83–104

    Article  PubMed  CAS  Google Scholar 

  • Chaudhry FA, Boulland JL, Jenstad M, Bredahl MK, Edwards RH (2008) Pharmacology of neurotransmitter transport into secretory vesicles. Handb Exp Pharmacol 184:77–106

    Article  PubMed  CAS  Google Scholar 

  • Chaudhry FA, Edwards RH, Fonnum F (2008) Vesicular neurotransmitter transporters as targets for endogenous and exogenous toxic substances. Annu Rev Pharmacol Toxicol 48:277–301

    Article  PubMed  CAS  Google Scholar 

  • Maycox PR, Hell JW, Jahn R (1990) Amino acid neurotransmission: spotlight on synaptic vesicles. Trends Neurosci 13:83–87

    Article  PubMed  CAS  Google Scholar 

  • Fykse EM, Fonnum F (1996) Amino acid neurotransmission: dynamics of vesicular uptake. Neurochem Res 21:1053–1060

    Article  PubMed  CAS  Google Scholar 

  • Eiden LE, Schafer MK, Weihe E, Schutz B (2004) The vesicular amine transporter family (SLC18): amine/proton antiporters required for vesicular accumulation and regulated exocytotic secretion of monoamines and acetylcholine. Pflugers Arch 447:636–640

    Article  PubMed  CAS  Google Scholar 

  • Hayashi M, Haga M, Yatsushiro S, Yamamoto A, Moriyama Y (1999) Vesicular monoamine transporter 1 is responsible for storage of 5-hydroxytryptamine in rat pinealocytes. J Neurochem 73:2538–2545

    Article  PubMed  CAS  Google Scholar 

  • Henry JP, Botton D, Sagne C, Isambert MF, Desnos C, Blanchard V et al (1994) Biochemistry and molecular biology of the vesicular monoamine transporter from chromaffin granules. J Exp Biol 196:251–262

    PubMed  CAS  Google Scholar 

  • Watson F, Kiernan RS, Deavall DG, Varro A, Dimaline R (2001) Transcriptional activation of the rat vesicular monoamine transporter 2 promoter in gastric epithelial cells: regulation by gastrin. J Biol Chem 276:7661–7671

    Article  PubMed  CAS  Google Scholar 

  • Peter D, Liu Y, Sternini C, de Giorgio R, Brecha N, Edwards RH (1995) Differential expression of two vesicular monoamine transporters. J Neurosci 15:6179–6188

    PubMed  CAS  Google Scholar 

  • Zucker M, Weizman A, Rehavi M (2001) Characterization of high-affinity [3H]TBZOH binding to the human platelet vesicular monoamine transporter. Life Sci 69:2311–2317

    Article  PubMed  CAS  Google Scholar 

  • De Giorgio R, Su D, Peter D, Edwards RH, Brecha NC, Sternini C (1996) Vesicular monoamine transporter 2 expression in enteric neurons and enterochromaffin-like cells of the rat. Neurosci Lett 217:77–80

    Article  PubMed  Google Scholar 

  • Anlauf M, Eissele R, Schafer MK, Eiden LE, Arnold R, Pauser U et al (2003) Expression of the two isoforms of the vesicular monoamine transporter (VMAT1 and VMAT2) in the endocrine pancreas and pancreatic endocrine tumors. J Histochem Cytochem 51:1027–1040

    PubMed  CAS  Google Scholar 

  • Erickson JD, Eiden LE, Schafer MK, Weihe E (1995) Reserpine- and tetrabenazine-sensitive transport of (3)H-histamine by the neuronal isoform of the vesicular monoamine transporter. J Mol Neurosci 6:277–287

    Article  PubMed  CAS  Google Scholar 

  • Nirenberg MJ, Liu Y, Peter D, Edwards RH, Pickel VM (1995) The vesicular monoamine transporter 2 is present in small synaptic vesicles and preferentially localizes to large dense core vesicles in rat solitary tract nuclei. Proc Natl Acad Sci USA 92:8773–8777

    Article  PubMed  CAS  Google Scholar 

  • Fon EA, Pothos EN, Sun BC, Killeen N, Sulzer D, Edwards RH (1997) Vesicular transport regulates monoamine storage and release but is not essential for amphetamine action. Neuron 19:1271–1283

    Article  PubMed  CAS  Google Scholar 

  • Erickson JD, Eiden LE (1993) Functional identification and molecular cloning of a human brain vesicle monoamine transporter. J Neurochem 61:2314–2317

    Article  PubMed  CAS  Google Scholar 

  • Pothos EN, Larsen KE, Krantz DE, Liu Y, Haycock JW, Setlik W et al (2000) Synaptic vesicle transporter expression regulates vesicle phenotype and quantal size. J Neurosci 20:7297–7306

    PubMed  CAS  Google Scholar 

  • Merickel A, Edwards RH (1995) Transport of histamine by vesicular monoamine transporter-2. Neuropharmacology 34:1543–1547

    Article  PubMed  CAS  Google Scholar 

  • Chaudhry FA, Edwards RH, Fonnum F (2008) Vesicular neurotransmitter transporters as targets for endogenous and exogenous toxic substances. Annu Rev Pharmacol Toxicol 48:277–301

    Article  PubMed  CAS  Google Scholar 

  • Knoth J, Zallakian M, Njus D (1981) Stoichiometry of H+-linked dopamine transport in chromaffin granule ghosts. Biochemistry 20:6625–6629

    Article  PubMed  CAS  Google Scholar 

  • Parsons SM (2000) Transport mechanisms in acetylcholine and monoamine storage. Faseb J 14:2423–2434

    Article  PubMed  CAS  Google Scholar 

  • Floor E, Leventhal PS, Schaeffer SF (1990) Partial purification and characterization of the vacuolar H(+)-ATPase of mammalian synaptic vesicles. J Neurochem 55:1663–1670

    Article  PubMed  CAS  Google Scholar 

  • Moriyama Y, Futai M (1990) H(+)-ATPase, a primary pump for accumulation of neurotransmitters, is a major constituent of brain synaptic vesicles. Biochem Biophys Res Commun 173:443–448

    Article  PubMed  CAS  Google Scholar 

  • Rudnick G (1987) The vacuolar ATPase is responsible for acidifying secretory organelles. Ann N Y Acad Sci 493:259–263

    Article  PubMed  CAS  Google Scholar 

  • Nelson N (1992) The vacuolar H(+)-ATPase—one of the most fundamental ion pumps in nature. J Exp Biol 172:19–27

    PubMed  CAS  Google Scholar 

  • Wilkens S (2005) Rotary molecular motors. Adv Protein Chem 71:345–382

    Article  PubMed  CAS  Google Scholar 

  • Maycox PR, Deckwerth T, Jahn R (1990) Bacteriorhodopsin drives the glutamate transporter of synaptic vesicles after co-reconstitution. Embo J 9:1465–1469

    PubMed  CAS  Google Scholar 

  • Bowman EJ, Siebers A, Altendorf K (1988) Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci USA 85:7972–7976

    Article  PubMed  CAS  Google Scholar 

  • Burre J, Volknandt W (2007) The synaptic vesicle proteome. J Neurochem 101:1448–1462

    Article  PubMed  CAS  Google Scholar 

  • Russell JT (1984) Delta pH, H+ diffusion potentials, and Mg2+ ATPase in neurosecretory vesicles isolated from bovine neurohypophyses. J Biol Chem 259:9496–9507

    PubMed  CAS  Google Scholar 

  • Christensen H, Fykse EM, Fonnum F (1990) Uptake of glycine into synaptic vesicles isolated from rat spinal cord. J Neurochem 54:1142–1147

    Article  PubMed  CAS  Google Scholar 

  • Faundez V, Hartzell HC (2004) Intracellular chloride channels: determinants of function in the endosomal pathway. Sci STKE 233:re8

    Article  Google Scholar 

  • Zeuzem S, Feick P, Zimmermann P, Haase W, Kahn RA, Schulz I (1992) Intravesicular acidification correlates with binding of ADP-ribosylation factor to microsomal membranes. Proc Natl Acad Sci USA 89:6619–6623

    Article  PubMed  CAS  Google Scholar 

  • Pazoles CJ, Creutz CE, Pollard HB (1980) Evidence for direct coupling of proton and anion transport in chromaffin granules. Ann N Y Acad Sci 358:354–355

    Article  PubMed  CAS  Google Scholar 

  • Stobrawa SM, Breiderhoff T, Takamori S, Engel D, Schweizer M, Zdebik AA et al (2001) Disruption of ClC-3, a chloride channel expressed on synaptic vesicles, leads to a loss of the hippocampus. Neuron 29:185–196

    Article  PubMed  CAS  Google Scholar 

  • Kasper D, Planells-Cases R, Fuhrmann JC, Scheel O, Zeitz O, Ruether K et al (2005) Loss of the chloride channel ClC-7 leads to lysosomal storage disease and neurodegeneration. Embo J 24:1079–1091

    Article  PubMed  CAS  Google Scholar 

  • Yelin R, Schuldiner S (1995) The pharmacological profile of the vesicular monoamine transporter resembles that of multidrug transporters. FEBS Lett 377:201–207

    Article  PubMed  CAS  Google Scholar 

  • Vardy E, Arkin IT, Gottschalk KE, Kaback HR, Schuldiner S (2004) Structural conservation in the major facilitator superfamily as revealed by comparative modeling. Protein Sci 13:1832–1840

    Article  PubMed  CAS  Google Scholar 

  • Kass-Simon G, Pierobon P (2007) Cnidarian chemical neurotransmission, an updated overview. Comp Biochem Physiol A Mol Integr Physiol 146:9–25

    Article  PubMed  CAS  Google Scholar 

  • Duerr JS, Frisby DL, Gaskin J, Duke A, Asermely K, Huddleston D et al (1999) The cat-1 gene of Caenorhabditis elegans encodes a vesicular monoamine transporter required for specific monoamine-dependent behaviors. J Neurosci 19:72–84

    PubMed  CAS  Google Scholar 

  • Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S (2003) Structure and mechanism of the lactose permease of Escherichia coli. Science 301:610–615

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Lemieux MJ, Song J, Auer M, Wang DN (2003) Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 301:616–620

    Article  PubMed  CAS  Google Scholar 

  • Vardy E, Steiner-Mordoch S, Schuldiner S (2005) Characterization of bacterial drug antiporters homologous to mammalian neurotransmitter transporters. J Bacteriol 187:7518–7525

    Article  PubMed  CAS  Google Scholar 

  • Wise RA (2002) Brain reward circuitry: insights from unsensed incentives. Neuron 36:229–240

    Article  PubMed  CAS  Google Scholar 

  • Koob GF, Le Moal M (1997) Drug abuse: hedonic homeostatic dysregulation. Science 278:52–58

    Article  PubMed  CAS  Google Scholar 

  • Floresco SB, Magyar O (2006) Mesocortical dopamine modulation of executive functions: beyond working memory. Psychopharmacology (Berl) 188:567–585

    Article  CAS  Google Scholar 

  • Bannon MJ, Roth RH (1983) Pharmacology of mesocortical dopamine neurons. Pharmacol Rev 35:53–68

    PubMed  CAS  Google Scholar 

  • Olanow CW, Tatton WG (1999) Etiology and pathogenesis of Parkinson's disease. Annu Rev Neurosci 22:123–144

    Article  PubMed  CAS  Google Scholar 

  • Chinta SJ, Andersen JK (2005) Dopaminergic neurons. Int J Biochem Cell Biol 37:942–946

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee M, Ghosh A (1997) Influence of haloperidol on testicular functions in rat. Indian J Exp Biol 35:1014–1015

    PubMed  CAS  Google Scholar 

  • Donoso AO, Coppola JA (1971) Gonad function and hypothalamic catecholamines. Neurosci Res Program Bull 9:251–252

    PubMed  CAS  Google Scholar 

  • Lerner J (1987) Acidic amino acid transport in animal cells and tissues. Comp Biochem Physiol B 87:443–457

    Article  PubMed  CAS  Google Scholar 

  • Nagatsu T, Levitt M, Udenfriend S (1964) Conversion of L-tyrosine to 3,4-dihydroxyphenylalanine by cell-free preparations of brain and sympathetically innervated tissues. Biochem Biophys Res Commun 14:543–549

    Article  PubMed  CAS  Google Scholar 

  • Weiss B, Rossi GV (1963) Catecholamines, biosynthesis and inhibitors of formation. Am J Pharm Sci Support Public Health 135:206–218

    PubMed  CAS  Google Scholar 

  • Mattammal MB, Haring JH, Chung HD, Raghu G, Strong R (1995) An endogenous dopaminergic neurotoxin: implication for Parkinson's disease. Neurodegeneration 4:271–281

    Article  PubMed  CAS  Google Scholar 

  • Rooke N, Li DJ, Li J, Keung WM (2000) The mitochondrial monoamine oxidase-aldehyde dehydrogenase pathway: a potential site of action of daidzin. J Med Chem 43:4169–4179

    Article  PubMed  CAS  Google Scholar 

  • Li L, Chin LS (2003) The molecular machinery of synaptic vesicle exocytosis. Cell Mol Life Sci 60:942–960

    PubMed  CAS  Google Scholar 

  • Jackson MB, Chapman ER (2006) Fusion pores and fusion machines in Ca2+-triggered exocytosis. Annu Rev Biophys Biomol Struct 35:135–160

    Article  PubMed  CAS  Google Scholar 

  • Mannisto PT, Ulmanen I, Lundstrom K, Taskinen J, Tenhunen J, Tilgmann C et al (1992) Characteristics of catechol O-methyl-transferase (COMT) and properties of selective COMT inhibitors. Prog Drug Res 39:291–350

    PubMed  CAS  Google Scholar 

  • Chen N, Reith ME (2000) Structure and function of the dopamine transporter. Eur J Pharmacol 405:329–339

    Article  PubMed  CAS  Google Scholar 

  • Axelrod J (1971) Brain monoamines. Biosynthesis and fate. Neurosci Res Program Bull 9:188–196

    PubMed  CAS  Google Scholar 

  • Napolitano A, Cesura AM, Da Prada M (1995) The role of monoamine oxidase and catechol O-methyltransferase in dopaminergic neurotransmission. J Neural Transm Suppl 45:35–45

    PubMed  CAS  Google Scholar 

  • Pothos EN (2002) Regulation of dopamine quantal size in midbrain and hippocampal neurons. Behav Brain Res 130:203–207

    Article  PubMed  CAS  Google Scholar 

  • Colliver TL, Pyott SJ, Achalabun M, Ewing AG (2000) VMAT-mediated changes in quantal size and vesicular volume. J Neurosci 20:5276–5282

    PubMed  CAS  Google Scholar 

  • Pothos E, Desmond M, Sulzer D (1996) l-3,4-dihydroxyphenylalanine increases the quantal size of exocytotic dopamine release in vitro. J Neurochem 66:629–636

    Article  PubMed  CAS  Google Scholar 

  • Staal RG, Mosharov EV, Sulzer D (2004) Dopamine neurons release transmitter via a flickering fusion pore. Nat Neurosci 7:341–346

    Article  PubMed  CAS  Google Scholar 

  • Harata NC, Aravanis AM, Tsien RW (2006) Kiss-and-run and full-collapse fusion as modes of exo-endocytosis in neurosecretion. J Neurochem 97:1546–1570

    Article  PubMed  CAS  Google Scholar 

  • Jones SR, Gainetdinov RR, Jaber M, Giros B, Wightman RM, Caron MG (1998) Profound neuronal plasticity in response to inactivation of the dopamine transporter. Proc Natl Acad Sci USA 95:4029–4034

    Article  PubMed  CAS  Google Scholar 

  • LaHoste GJ, Marshall JF (1994) Rapid development of D1 and D2 dopamine receptor supersensitivity as indicated by striatal and pallidal Fos expression. Neurosci Lett 179:153–156

    Article  PubMed  CAS  Google Scholar 

  • LaHoste GJ, Yu J, Marshall JF (1993) Striatal Fos expression is indicative of dopamine D1/D2 synergism and receptor supersensitivity. Proc Natl Acad Sci USA 90:7451–7455

    Article  PubMed  CAS  Google Scholar 

  • Takahashi N, Miner LL, Sora I, Ujike H, Revay RS, Kostic V et al (1997) VMAT2 knockout mice: heterozygotes display reduced amphetamine-conditioned reward, enhanced amphetamine locomotion, and enhanced MPTP toxicity. Proc Natl Acad Sci USA 94:9938–9943

    Article  PubMed  CAS  Google Scholar 

  • Patel J, Mooslehner KA, Chan PM, Emson PC, Stamford JA (2003) Presynaptic control of striatal dopamine neurotransmission in adult vesicular monoamine transporter 2 (VMAT2) mutant mice. J Neurochem 85:898–910

    Article  PubMed  CAS  Google Scholar 

  • Colebrooke RE, Chan PM, Lynch PJ, Mooslehner K, Emson PC (2007) Differential gene expression in the striatum of mice with very low expression of the vesicular monoamine transporter type 2 gene. Brain Res 1152:10–16

    Article  PubMed  CAS  Google Scholar 

  • Truong JG, Newman AH, Hanson GR, Fleckenstein AE (2004) Dopamine D2 receptor activation increases vesicular dopamine uptake and redistributes vesicular monoamine transporter-2 protein. Eur J Pharmacol 504:27–32

    Article  PubMed  CAS  Google Scholar 

  • Truong JG, Hanson GR, Fleckenstein AE (2004) Apomorphine increases vesicular monoamine transporter-2 function: implications for neurodegeneration. Eur J Pharmacol 492:143–147

    Article  PubMed  CAS  Google Scholar 

  • Truong JG, Rau KS, Hanson GR, Fleckenstein AE (2003) Pramipexole increases vesicular dopamine uptake: implications for treatment of Parkinson's neurodegeneration. Eur J Pharmacol 474:223–226

    Article  PubMed  CAS  Google Scholar 

  • Sandoval V, Riddle EL, Hanson GR, Fleckenstein AE (2002) Methylphenidate redistributes vesicular monoamine transporter-2: role of dopamine receptors. J Neurosci 22:8705–8710

    PubMed  CAS  Google Scholar 

  • Brown JM, Hanson GR, Fleckenstein AE (2001) Cocaine-induced increases in vesicular dopamine uptake: role of dopamine receptors. J Pharmacol Exp Ther 298:1150–1153

    PubMed  CAS  Google Scholar 

  • Rau KS, Birdsall E, Hanson JE, Johnson-Davis KL, Carroll FI, Wilkins DG et al (2005) Bupropion increases striatal vesicular monoamine transport. Neuropharmacology 49:820–830

    Article  PubMed  CAS  Google Scholar 

  • Gilani AH, Rahman AU (2005) Trends in ethnopharmocology. J Ethnopharmacol 100:43–49

    Article  PubMed  Google Scholar 

  • Baumeister AA, Hawkins MF, Uzelac SM (2003) The myth of reserpine-induced depression: role in the historical development of the monoamine hypothesis. J Hist Neurosci 12:207–220

    Article  PubMed  Google Scholar 

  • Hughes W, Dennis E, Mc CR, Ford R, Moyer JH (1954) Reserpine (serpasil) in the treatment of hypertension. Am J Med Sci 228:21–35

    Article  PubMed  CAS  Google Scholar 

  • Freis ED (1954) Mental depression in hypertensive patients treated for long periods with large doses of reserpine. N Engl J Med 251:1006–1008

    Article  PubMed  CAS  Google Scholar 

  • Achor RW, Hanson NO, Gifford RW Jr (1955) Hypertension treated with Rauwolfia serpentina (whole root) and with reserpine; controlled study disclosing occasional severe depression. J Am Med Assoc 159:841–845

    PubMed  CAS  Google Scholar 

  • Schildkraut JJ, Schanberg SM, Kopin IJ, Durell J (1969) Affective disorders and norepinephrine pharmacology. Int Psychiatry Clin 6:83–141

    PubMed  CAS  Google Scholar 

  • Takahashi R, Tateishi T, Yoshida H, Nagayama H, Tachiki KH (1981) Serotonin metabolism of animal model of depression. Adv Exp Med Biol 133:603–625

    PubMed  CAS  Google Scholar 

  • Erickson JD, Schafer MK, Bonner TI, Eiden LE, Weihe E (1996) Distinct pharmacological properties and distribution in neurons and endocrine cells of two isoforms of the human vesicular monoamine transporter. Proc Natl Acad Sci USA 93:5166–5171

    Article  PubMed  CAS  Google Scholar 

  • Darchen F, Scherman D, Henry JP (1989) Reserpine binding to chromaffin granules suggests the existence of two conformations of the monoamine transporter. Biochemistry 28:1692–1697

    Article  PubMed  CAS  Google Scholar 

  • Schuldiner S, Liu Y, Edwards RH (1993) Reserpine binding to a vesicular amine transporter expressed in Chinese hamster ovary fibroblasts. J Biol Chem 268:29–34

    PubMed  CAS  Google Scholar 

  • Stitzel RE (1976) The biological fate of reserpine. Pharmacol Rev 28:179–208

    PubMed  CAS  Google Scholar 

  • Scherman D, Henry JP (1984) Reserpine binding to bovine chromaffin granule membranes. Characterization and comparison with dihydrotetrabenazine binding. Mol Pharmacol 25:113–122

    PubMed  CAS  Google Scholar 

  • Near JA (1986) [3H]Dihydrotetrabenazine binding to bovine striatal synaptic vesicles. Mol Pharmacol 30:252–257

    PubMed  CAS  Google Scholar 

  • Sweet RD, Bruun R, Shapiro E, Shapiro AK (1974) Presynaptic catecholamine antagonists as treatment for Tourette syndrome. Effects of alpha methyl para tyrosine and tetrabenazine. Arch Gen Psychiatry 31:857–861

    PubMed  CAS  Google Scholar 

  • Kilbourn MR, DaSilva JN, Frey KA, Koeppe RA, Kuhl DE (1993) In vivo imaging of vesicular monoamine transporters in human brain using [11C]tetrabenazine and positron emission tomography. J Neurochem 60:2315–2318

    Article  PubMed  CAS  Google Scholar 

  • Soutar CA (1970) Tetrabenazine for Huntington's chorea. Br Med J 4:55

    Article  PubMed  CAS  Google Scholar 

  • Henry JP, Scherman D (1989) Radioligands of the vesicular monoamine transporter and their use as markers of monoamine storage vesicles. Biochem Pharmacol 38:2395–2404

    Article  PubMed  CAS  Google Scholar 

  • Darchen F, Scherman D, Laduron PM, Henry JP (1988) Ketanserin binds to the monoamine transporter of chromaffin granules and of synaptic vesicles. Mol Pharmacol 33:672–677

    PubMed  CAS  Google Scholar 

  • Leysen JE, Eens A, Gommeren W, van Gompel P, Wynants J, Janssen PA (1988) Identification of nonserotonergic [3H]ketanserin binding sites associated with nerve terminals in rat brain and with platelets; relation with release of biogenic amine metabolites induced by ketanserin- and tetrabenazine-like drugs. J Pharmacol Exp Ther 244:310–321

    PubMed  CAS  Google Scholar 

  • Pettersson A, Persson B, Henning M, Hedner T (1984) Antihypertensive effects of chronic 5-hydroxytryptamine (5-HT2) receptor blockade with ketanserin in the spontaneously hypertensive rat. Naunyn Schmiedebergs Arch Pharmacol 327:43–47

    Article  PubMed  CAS  Google Scholar 

  • Isambert MF, Gasnier B, Laduron PM, Henry JP (1989) Photoaffinity labeling of the monoamine transporter of bovine chromaffin granules and other monoamine storage vesicles using 7-azido-8-[125I]iodoketanserin. Biochemistry 28:2265–2270

    Article  PubMed  CAS  Google Scholar 

  • Isambert MF, Gasnier B, Botton D, Henry JP (1992) Characterization and purification of the monoamine transporter of bovine chromaffin granules. Biochemistry 31:1980–1986

    Article  PubMed  CAS  Google Scholar 

  • Teng L, Crooks PA, Sonsalla PK, Dwoskin LP (1997) Lobeline and nicotine evoke [3H]overflow from rat striatal slices preloaded with [3H]dopamine: differential inhibition of synaptosomal and vesicular [3H]dopamine uptake. J Pharmacol Exp Ther 280:1432–1444

    PubMed  CAS  Google Scholar 

  • Wilhelm CJ, Johnson RA, Lysko PG, Eshleman AJ, Janowsky A (2004) Effects of methamphetamine and lobeline on vesicular monoamine and dopamine transporter-mediated dopamine release in a cotransfected model system. J Pharmacol Exp Ther 310:1142–1151

    Article  PubMed  CAS  Google Scholar 

  • Teng L, Crooks PA, Dwoskin LP (1998) Lobeline displaces [3H]dihydrotetrabenazine binding and releases [3H]dopamine from rat striatal synaptic vesicles: comparison with d-amphetamine. J Neurochem 71:258–265

    Article  PubMed  CAS  Google Scholar 

  • Harrod SB, Dwoskin LP, Crooks PA, Klebaur JE, Bardo MT (2001) Lobeline attenuates d-methamphetamine self-administration in rats. J Pharmacol Exp Ther 298:172–179

    PubMed  CAS  Google Scholar 

  • Miller DK, Crooks PA, Teng L, Witkin JM, Munzar P, Goldberg SR et al (2001) Lobeline inhibits the neurochemical and behavioral effects of amphetamine. J Pharmacol Exp Ther 296:1023–1034

    PubMed  CAS  Google Scholar 

  • Dwoskin LP, Crooks PA (2002) A novel mechanism of action and potential use for lobeline as a treatment for psychostimulant abuse. Biochem Pharmacol 63:89–98

    Article  PubMed  CAS  Google Scholar 

  • Neugebauer NM, Harrod SB, Stairs DJ, Crooks PA, Dwoskin LP, Bardo MT (2007) Lobelane decreases methamphetamine self-administration in rats. Eur J Pharmacol 571:33–38

    Article  PubMed  CAS  Google Scholar 

  • Rudolf G (1949) The treatment of depression with desoxyephedrine. J Ment Sci 95:920–929

    Google Scholar 

  • Monro AB, Conizer H (1950) A comparison of desoxyephedrine (methedrine), and electroshock in the treatment of depression. J Ment Sci 96:1037–1042

    PubMed  CAS  Google Scholar 

  • Partilla JS, Dempsey AG, Nagpal AS, Blough BE, Baumann MH, Rothman RB (2006) Interaction of amphetamines and related compounds at the vesicular monoamine transporter. J Pharmacol Exp Ther 319:237–246

    Article  PubMed  CAS  Google Scholar 

  • Kilbourn M, Lee L, Vander Borght T, Jewett D, Frey K (1995) Binding of alpha-dihydrotetrabenazine to the vesicular monoamine transporter is stereospecific. Eur J Pharmacol 278:249–252

    Article  PubMed  CAS  Google Scholar 

  • Sulzer D, Sonders MS, Poulsen NW, Galli A (2005) Mechanisms of neurotransmitter release by amphetamines: a review. Prog Neurobiol 75:406–433

    Article  PubMed  CAS  Google Scholar 

  • Mariussen E, Andersson PL, Tysklind M, Fonnum F (2001) Effect of polychlorinated biphenyls on the uptake of dopamine into rat brain synaptic vesicles: a structure-activity study. Toxicol Appl Pharmacol 175:176–183

    Article  PubMed  CAS  Google Scholar 

  • Richardson JR, Miller GW (2004) Acute exposure to aroclor 1016 or 1260 differentially affects dopamine transporter and vesicular monoamine transporter 2 levels. Toxicol Lett 148:29–40

    Article  PubMed  CAS  Google Scholar 

  • Caudle WM, Richardson JR, Delea KC, Guillot TS, Wang M, Pennell KD et al (2006) Polychlorinated biphenyl-induced reduction of dopamine transporter expression as a precursor to Parkinson's disease-associated dopamine toxicity. Toxicol Sci 92:490–499

    Article  PubMed  CAS  Google Scholar 

  • Izenwasser S, Newman AH, Cox BM, Katz JL (1996) The cocaine-like behavioral effects of meperidine are mediated by activity at the dopamine transporter. Eur J Pharmacol 297:9–17

    Article  PubMed  CAS  Google Scholar 

  • Davis GC, Williams AC, Markey SP, Ebert MH, Caine ED, Reichert CM et al (1979) Chronic Parkinsonism secondary to intravenous injection of meperidine analogs. Psychiatry Res 1:249–254

    Article  PubMed  CAS  Google Scholar 

  • Langston JW, Ballard PA Jr (1983) Parkinson's disease in a chemist working with 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. N Engl J Med 309:310

    PubMed  CAS  Google Scholar 

  • Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980

    Article  PubMed  CAS  Google Scholar 

  • Langston JW, Irwin I, Langston EB, Forno LS (1984) 1-Methyl-4-phenylpyridinium ion (MPP+): identification of a metabolite of MPTP, a toxin selective to the substantia nigra. Neurosci Lett 48:87–92

    Article  PubMed  CAS  Google Scholar 

  • Khan SU, Lee KS (1976) Determination of cyperquat (1-methyl-4-phenylpyridinium chloride) residues in soil by gas-liquid chromatography. J Agric Food Chem 24:684–686

    Article  PubMed  CAS  Google Scholar 

  • Reinhard JF Jr, Diliberto EJ Jr, Viveros OH, Daniels AJ (1987) Subcellular compartmentalization of 1-methyl-4-phenylpyridinium with catecholamines in adrenal medullary chromaffin vesicles may explain the lack of toxicity to adrenal chromaffin cells. Proc Natl Acad Sci USA 84:8160–8164

    Article  PubMed  CAS  Google Scholar 

  • Reinhard JF Jr, Diliberto EJ Jr, Daniels AJ (1989) Characterization of cellular transport, subcellular distribution, and secretion of the neurotoxicant 1-methyl-4-phenylpyridinium in bovine adrenomedullary cell cultures. J Neurochem 52:1253–1259

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Peter D, Roghani A, Schuldiner S, Prive GG, Eisenberg D et al (1992) A cDNA that suppresses MPP+ toxicity encodes a vesicular amine transporter. Cell 70:539–551

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Roghani A, Edwards RH (1992) Gene transfer of a reserpine-sensitive mechanism of resistance to N-methyl-4-phenylpyridinium. Proc Natl Acad Sci USA 89:9074–9078

    Article  PubMed  CAS  Google Scholar 

  • Erickson JD, Eiden LE, Hoffman BJ (1992) Expression cloning of a reserpine-sensitive vesicular monoamine transporter. Proc Natl Acad Sci USA 89:10993–10997

    Article  PubMed  CAS  Google Scholar 

  • Wang YM, Gainetdinov RR, Fumagalli F, Xu F, Jones SR, Bock CB et al (1997) Knockout of the vesicular monoamine transporter 2 gene results in neonatal death and supersensitivity to cocaine and amphetamine. Neuron 19:1285–1296

    Article  PubMed  CAS  Google Scholar 

  • Gainetdinov RR, Fumagalli F, Wang YM, Jones SR, Levey AI, Miller GW et al (1998) Increased MPTP neurotoxicity in vesicular monoamine transporter 2 heterozygote knockout mice. J Neurochem 70:1973–1978

    Article  PubMed  CAS  Google Scholar 

  • Stern-Bach Y, Keen JN, Bejerano M, Steiner-Mordoch S, Wallach M, Findlay JB et al (1992) Homology of a vesicular amine transporter to a gene conferring resistance to 1-methyl-4-phenylpyridinium. Proc Natl Acad Sci USA 89:9730–9733

    Article  PubMed  CAS  Google Scholar 

  • Chen CX, Huang SY, Zhang L, Liu YJ (2005) Synaptophysin enhances the neuroprotection of VMAT2 in MPP+ -induced toxicity in MN9D cells. Neurobiol Dis 19:419–426

    Article  PubMed  CAS  Google Scholar 

  • Kariya S, Takahashi N, Hirano M, Ueno S (2005) Increased vulnerability to L-DOPA toxicity in dopaminergic neurons From VMAT2 heterozygote knockout mice. J Mol Neurosci 27:277–279

    Article  PubMed  CAS  Google Scholar 

  • Caudle WM, Richardson JR, Wang MZ, Taylor TN, Guillot TS, McCormack AL et al (2007) Reduced vesicular storage of dopamine causes progressive nigrostriatal neurodegeneration. J Neurosci 27:8138–8148

    Article  PubMed  CAS  Google Scholar 

  • Thomas DM, Francescutti-Verbeem DM, Kuhn DM (2008) The newly synthesized pool of dopamine determines the severity of methamphetamine-induced neurotoxicity. J Neurochem 105:605–616

    Article  PubMed  CAS  Google Scholar 

  • Sulzer D, Zecca L (2000) Intraneuronal dopamine-quinone synthesis: a review. Neurotox Res 1:181–195

    Article  PubMed  CAS  Google Scholar 

  • Richardson JR, Caudle WM, Guillot TS, Watson JL, Nakamaru-Ogiso E, Seo BB et al (2007) Obligatory role for complex I inhibition in the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Toxicol Sci 95:196–204

    Article  PubMed  CAS  Google Scholar 

  • Seo BB, Nakamaru-Ogiso E, Flotte TR, Matsuno-Yagi A, Yagi T (2006) In vivo complementation of complex I by the yeast Ndi1 enzyme. Possible application for treatment of Parkinson disease. J Biol Chem 281:14250–14255

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Edwards RH (1997) The role of vesicular transport proteins in synaptic transmission and neural degeneration. Annu Rev Neurosci 20:125–156

    Article  PubMed  CAS  Google Scholar 

  • Miller GW, Gainetdinov RR, Levey AI, Caron MG (1999) Dopamine transporters and neuronal injury. Trends Pharmacol Sci 20:424–429

    Article  PubMed  CAS  Google Scholar 

  • Uhl GR (1998) Hypothesis: the role of dopaminergic transporters in selective vulnerability of cells in Parkinson's disease. Ann Neurol 43:555–560

    Article  PubMed  CAS  Google Scholar 

  • Miller GW, Gilmor ML, Levey AI (1998) Generation of transporter-specific antibodies. Methods Enzymol 296:407–422

    Article  PubMed  CAS  Google Scholar 

  • Giovanni A, Sieber BA, Heikkila RE, Sonsalla PK (1994) Studies on species sensitivity to the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Part 1: Systemic administration. J Pharmacol Exp Ther 270:1000–1007

    PubMed  CAS  Google Scholar 

  • Giovanni A, Sonsalla PK, Heikkila RE (1994) Studies on species sensitivity to the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Part 2: Central administration of 1-methyl-4-phenylpyridinium. J Pharmacol Exp Ther 270:1008–1014

    PubMed  CAS  Google Scholar 

  • Russo SM, Daniels AJ, Viveros OH, Reinhard JF Jr. (1994) Differences in the reserpine-sensitive storage in vivo of 1-methyl-4-phenylpyridinium in rats and mice may explain differences in catecholamine toxicity to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurotoxicol Teratol 16:277–281

    Article  PubMed  CAS  Google Scholar 

  • Staal RG, Hogan KA, Liang CL, German DC, Sonsalla PK (2000) In vitro studies of striatal vesicles containing the vesicular monoamine transporter (VMAT2): rat versus mouse differences in sequestration of 1-methyl-4-phenylpyridinium. J Pharmacol Exp Ther 293:329–335

    PubMed  CAS  Google Scholar 

  • Staal RG, Sonsalla PK (2000) Inhibition of brain vesicular monoamine transporter (VMAT2) enhances 1-methyl-4-phenylpyridinium neurotoxicity in vivo in rat striata. J Pharmacol Exp Ther 293:336–342

    PubMed  CAS  Google Scholar 

  • Schapira AH (2002) Dopamine agonists and neuroprotection in Parkinson's disease. Eur J Neurol 9(Suppl 3):7–14

    Article  PubMed  Google Scholar 

  • Faherty CJ, Raviie Shepherd K, Herasimtschuk A, Smeyne RJ (2005) Environmental enrichment in adulthood eliminates neuronal death in experimental Parkinsonism. Brain Res Mol Brain Res 134:170–179

    Article  PubMed  CAS  Google Scholar 

  • Richardson JR, Caudle WM, Wang M, Dean ED, Pennell KD, Miller GW (2006) Developmental exposure to the pesticide dieldrin alters the dopamine system and increases neurotoxicity in an animal model of Parkinson's disease. Faseb J 20:1695–1697

    Article  PubMed  CAS  Google Scholar 

  • Miller GW, Kirby ML, Levey AI, Bloomquist JR (1999) Heptachlor alters expression and function of dopamine transporters. Neurotoxicology 20:631–637

    PubMed  CAS  Google Scholar 

  • Kilbourn MR, Sherman PS, Abbott LC (1995) Mutant mouse strains as models for in vivo radiotracer evaluations: [11C]methoxytetrabenazine ([11C]MTBZ) in tottering mice. Nucl Med Biol 22:565–567

    Article  PubMed  CAS  Google Scholar 

  • Kilbourn MR, Sherman P, Abbott LC (1998) Reduced MPTP neurotoxicity in striatum of the mutant mouse tottering. Synapse 30:205–210

    Article  PubMed  CAS  Google Scholar 

  • Rommelfanger KS, Weinshenker D, Miller GW (2004) Reduced MPTP toxicity in noradrenaline transporter knockout mice. J Neurochem 91:1116–1124

    Article  PubMed  CAS  Google Scholar 

  • Jenner P, Olanow CW (1996) Oxidative stress and the pathogenesis of Parkinson's disease. Neurology 47:S161–S170

    PubMed  CAS  Google Scholar 

  • Olanow CW (1990) Oxidation reactions in Parkinson's disease. Neurology 40(suppl):32–37, discussion 37–9

    PubMed  Google Scholar 

  • Jenner P (1996) Oxidative stress in Parkinson's disease and other neurodegenerative disorders. Pathol Biol (Paris) 44:57–64

    CAS  Google Scholar 

  • Choi HJ, Lee SY, Cho Y, Hwang O (2005) Inhibition of vesicular monoamine transporter enhances vulnerability of dopaminergic cells: relevance to Parkinson's disease. Neurochem Int 46:329–335

    Article  PubMed  CAS  Google Scholar 

  • Fornstedt B, Rosengren E, Carlsson A (1986) Occurrence and distribution of 5-S-cysteinyl derivatives of dopamine, dopa and dopac in the brains of eight mammalian species. Neuropharmacology 25:451–454

    Article  PubMed  CAS  Google Scholar 

  • Hastings TG, Lewis DA, Zigmond MJ (1996) Role of oxidation in the neurotoxic effects of intrastriatal dopamine injections. Proc Natl Acad Sci USA 93:1956–1961

    Article  PubMed  CAS  Google Scholar 

  • Hastings TG, Zigmond MJ (1994) Identification of catechol-protein conjugates in neostriatal slices incubated with [3H]dopamine: impact of ascorbic acid and glutathione. J Neurochem 63:1126–1132

    Article  PubMed  CAS  Google Scholar 

  • Hatcher JM, Richardson JR, Guillot TS, McCormack AL, Di Monte DA, Jones DP et al (2007) Dieldrin exposure induces oxidative damage in the mouse nigrostriatal dopamine system. Exp Neurol 204:619–630

    Article  PubMed  CAS  Google Scholar 

  • Spencer JP, Whiteman M, Jenner P, Halliwell B (2002) 5-s-Cysteinyl-conjugates of catecholamines induce cell damage, extensive DNA base modification and increases in caspase-3 activity in neurons. J Neurochem 81:122–129

    Article  PubMed  CAS  Google Scholar 

  • Hastings TG, Zigmond MJ (1997) Loss of dopaminergic neurons in parkinsonism: possible role of reactive dopamine metabolites. J Neural Transm Suppl 49:103–110

    PubMed  CAS  Google Scholar 

  • Fornstedt B, Carlsson A (1989) A marked rise in 5-S-cysteinyl-dopamine levels in guinea-pig striatum following reserpine treatment. J Neural Transm 76:155–161

    Article  PubMed  CAS  Google Scholar 

  • Fuentes P, Paris I, Nassif M, Caviedes P, Segura-Aguilar J (2007) Inhibition of VMAT-2 and DT-diaphorase induce cell death in a substantia nigra-derived cell line–an experimental cell model for dopamine toxicity studies. Chem Res Toxicol 20:776–783

    Article  PubMed  CAS  Google Scholar 

  • Bilska A, Dubiel M, Sokolowska-Jezewicz M, Lorenc-Koci E, Wlodek L (2007) Alpha-lipoic acid differently affects the reserpine-induced oxidative stress in the striatum and prefrontal cortex of rat brain. Neuroscience 146:1758–1771

    Article  PubMed  CAS  Google Scholar 

  • Spina MB, Cohen G (1989) Dopamine turnover and glutathione oxidation: implications for Parkinson disease. Proc Natl Acad Sci USA 86:1398–1400

    Article  PubMed  CAS  Google Scholar 

  • Abilio VC, Araujo CC, Bergamo M, Calvente PR, D'Almeida V, Ribeiro Rde A et al (2003) Vitamin E attenuates reserpine-induced oral dyskinesia and striatal oxidized glutathione/reduced glutathione ratio (GSSG/GSH) enhancement in rats. Prog Neuropsychopharmacol Biol Psychiatry 27:109–114

    Article  PubMed  CAS  Google Scholar 

  • Satou T, Anderson AJ, Itoh T, Tamai Y, Hayashi Y, Hashimoto S (2001) Repetitive administration of tetrabenazine induces irreversible changes in locomotion and morphology of the substantia nigra in rats. Exp Toxicol Pathol 53:303–308

    Article  PubMed  CAS  Google Scholar 

  • Sai Y, Wu Q, Le W, Ye F, Li Y, Dong Z (2008) Rotenone-induced PC12 cell toxicity is caused by oxidative stress resulting from altered dopamine metabolism. Toxicol In Vitro 22:1461–1468

    Article  PubMed  CAS  Google Scholar 

  • Park SS, Schulz EM, Lee D (2007) Disruption of dopamine homeostasis underlies selective neurodegeneration mediated by alpha-synuclein. Eur J Neurosci 26:3104–3112

    Article  PubMed  Google Scholar 

  • Lyng GD, Seegal RF (2008) Polychlorinated biphenyl-induced oxidative stress in organotypic co-cultures: experimental dopamine depletion prevents reductions in GABA. Neurotoxicology 29:301–308

    Article  PubMed  CAS  Google Scholar 

  • Glatt CE, Wahner AD, White DJ, Ruiz-Linares A, Ritz B (2006) Gain-of-function haplotypes in the vesicular monoamine transporter promoter are protective for Parkinson disease in women. Hum Mol Genet 15:299–305

    Article  PubMed  CAS  Google Scholar 

  • Szot P, White SS, Greenup JL, Leverenz JB, Peskind ER, Raskind MA (2006) Compensatory changes in the noradrenergic nervous system in the locus ceruleus and hippocampus of postmortem subjects with Alzheimer's disease and dementia with Lewy bodies. J Neurosci 26:467–478

    Article  PubMed  CAS  Google Scholar 

  • Mann DM (1983) The locus coeruleus and its possible role in ageing and degenerative disease of the human central nervous system. Mech Ageing Dev 23:73–94

    Article  PubMed  CAS  Google Scholar 

  • Zarow C, Lyness SA, Mortimer JA, Chui HC (2003) Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch Neurol 60:337–341

    Article  PubMed  Google Scholar 

  • Manini P, Panzella L, Napolitano A, d'Ischia M (2007) Oxidation Chemistry of Norepinephrine: Partitioning of the O-Quinone between Competing Cyclization and Chain Breakdown Pathways and Their Roles in Melanin Formation. Chem Res Toxicol 20:1549–1555

    Article  PubMed  CAS  Google Scholar 

  • Shen XM, Dryhurst G (1996) Oxidation chemistry of (-)-norepinephrine in the presence of L-cysteine. J Med Chem 39:2018–2029

    Article  PubMed  CAS  Google Scholar 

  • Xin W, Shen XM, Li H, Dryhurst G (2000) Oxidative metabolites of 5-S-cysteinylnorepinephrine are irreversible inhibitors of mitochondrial complex I and the alpha-ketoglutarate dehydrogenase and pyruvate dehydrogenase complexes: possible implications for neurodegenerative brain disorders. Chem Res Toxicol 13:749–760

    Article  PubMed  CAS  Google Scholar 

  • Zecca L, Zucca FA, Wilms H, Sulzer D (2003) Neuromelanin of the substantia nigra: a neuronal black hole with protective and toxic characteristics. Trends Neurosci 26:578–580

    Article  PubMed  CAS  Google Scholar 

  • Solano F, Hearing VJ, Garcia-Borron JC (2000) Neurotoxicity due to o-quinones: neuromelanin formation and possible mechanisms for o-quinone detoxification. Neurotox Res 1:153–169

    Article  PubMed  CAS  Google Scholar 

  • Sulzer D, Bogulavsky J, Larsen KE, Behr G, Karatekin E, Kleinman MH et al (2000) Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. Proc Natl Acad Sci USA 97:11869–11874

    Article  PubMed  CAS  Google Scholar 

  • Sinhababu AK, Ghosh AK, Borchardt RT (1985) Molecular mechanism of action of 5,6-dihydroxytryptamine.) Synthesis and biological evaluation of 4-methyl-, 7-methyl-, and 4,7-dimethyl-5,6-dihydroxytryptamines. J Med Chem 28:1273–1279

    Article  PubMed  CAS  Google Scholar 

  • Daly J, Fuxe K, Jonsson G (1973) Effects of intracerebral injections of 5,6-dihydroxytryptamine on central monoamine neurons: evidence for selective degeneration of central 5-hydroxytryptamine neurons. Brain Res 49:476–482

    Article  PubMed  CAS  Google Scholar 

  • Wrona MZ, Yang Z, McAdams M, O'Connor-Coates S, Dryhurst G (1995) Hydroxyl radical-mediated oxidation of serotonin: potential insights into the neurotoxicity of methamphetamine. J Neurochem 64:1390–1400

    Article  PubMed  CAS  Google Scholar 

  • Baumgarten HG, Lachenmayer L (2004) Serotonin neurotoxins–past and present. Neurotox Res 6:589–614

    Article  PubMed  CAS  Google Scholar 

  • Wong KS, Goyal RN, Wrona MZ, Blank CL, Dryhurst G (1993) 7-S-glutathionyl-tryptamine-4,5-dione: a possible aberrant metabolite of serotonin. Biochem Pharmacol 46:1637–1652

    Article  PubMed  CAS  Google Scholar 

  • Wrona MZ, Goyal RN, Turk DJ, Blank CL, Dryhurst G (1992) 5,5′-Dihydroxy-4,4′-bitryptamine: a potentially aberrant, neurotoxic metabolite of serotonin. J Neurochem 59:1392–1398

    Article  PubMed  CAS  Google Scholar 

  • Wrona MZ, Dryhurst G (1998) Oxidation of serotonin by superoxide radical: implications to neurodegenerative brain disorders. Chem Res Toxicol 11:639–650

    Article  PubMed  CAS  Google Scholar 

  • Jones CE, Underwood CK, Coulson EJ, Taylor PJ (2007) Copper induced oxidation of serotonin: analysis of products and toxicity. J Neurochem 102:1035–1043

    Article  PubMed  CAS  Google Scholar 

  • Wrona MZ, Yang Z, Zhang F, Dryhurst G (1997) Potential new insights into the molecular mechanisms of methamphetamine-induced neurodegeneration. NIDA Res Monogr 173:146–174

    PubMed  CAS  Google Scholar 

  • Deitrich R, Erwin V (1980) Biogenic amine-aldehyde condensation products: tetrahydroisoquinolines and tryptolines (beta-carbolines). Annu Rev Pharmacol Toxicol 20:55–80

    Article  PubMed  CAS  Google Scholar 

  • Lauwers W, Leysen J, Verhoeven H, Laduron P (1975) Identification of alkaloids; the condensation products of biogenic amines with formaldehyde, enzymatically formed from 5-methyltetrahydrofolic acid. Biomed Mass Spectrom 2:15–22

    Article  PubMed  CAS  Google Scholar 

  • Rommelspacher H, Coper H, Strauss S (1976) On the mode of formation of tetrahydro-beta carbolines. Life Sci 18:81–88

    Article  PubMed  CAS  Google Scholar 

  • Moser A, Kompf D (1992) Presence of methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinolines, derivatives of the neurotoxin isoquinoline, in parkinsonian lumbar CSF. Life Sci 50:1885–1891

    Article  PubMed  CAS  Google Scholar 

  • Naoi M, Dostert P, Yoshida M, Nagatsu T (1993) N-methylated tetrahydroisoquinolines as dopaminergic neurotoxins. Adv Neurol 60:212–217

    PubMed  CAS  Google Scholar 

  • Maruyama W, Sobue G, Matsubara K, Hashizume Y, Dostert P, Naoi M (1997) A dopaminergic neurotoxin, 1(R), 2(N)-dimethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, N-methyl(R)salsolinol, and its oxidation product, 1,2(N)-dimethyl-6,7-dihydroxyisoquinolinium ion, accumulate in the nigro-striatal system of the human brain. Neurosci Lett 223:61–64

    Article  PubMed  CAS  Google Scholar 

  • Nagatsu T (1997) Isoquinoline neurotoxins in the brain and Parkinson's disease. Neurosci Res 29:99–111

    Article  PubMed  CAS  Google Scholar 

  • Perrine DM (1998) N-methyl-(R)-salsolinol and Parkinson's disease. Lancet 351:1818

    Article  PubMed  CAS  Google Scholar 

  • Chun HS, Gibson GE, DeGiorgio LA, Zhang H, Kidd VJ, Son JH (2001) Dopaminergic cell death induced by MPP(+), oxidant and specific neurotoxicants shares the common molecular mechanism. J Neurochem 76:1010–1021

    Article  PubMed  CAS  Google Scholar 

  • Marchitti SA, Deitrich RA, Vasiliou V (2007) Neurotoxicity and metabolism of the catecholamine-derived 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylglycolaldehyde: the role of aldehyde dehydrogenase. Pharmacol Rev 59:125–150

    Article  PubMed  CAS  Google Scholar 

  • Weiner H (1980) Estimation of the in vivo concentration of salsolinol and tetrahydropapaveroline in rat brain after the administration of ethanol. Subst Alcohol Actions Misuse 1:317–322

    PubMed  CAS  Google Scholar 

  • Collins MA, Bigdeli MG (1975) Tetrahydroisoquinolines in vivo. I. Rat brain formation of salsolinol, a condensation product of dopamine and acetaldehyde, under certain conditions during ethanol intoxication. Life Sci 16:585–601

    PubMed  CAS  Google Scholar 

  • Sjoquist B, Liljequist S, Engel J (1982) Increased salsolinol levels in rat striatum and limbic forebrain following chronic ethanol treatment. J Neurochem 39:259–262

    Article  PubMed  CAS  Google Scholar 

  • Jamal M, Ameno K, Kubota T, Ameno S, Zhang X, Kumihashi M et al (2003) In vivo formation of salsolinol induced by high acetaldehyde concentration in rat striatum employing microdialysis. Alcohol Alcohol 38:197–201

    PubMed  CAS  Google Scholar 

  • Naoi M, Maruyama W, Dostert P, Kohda K, Kaiya T (1996) A novel enzyme enantio-selectively synthesizes (R)salsolinol, a precursor of a dopaminergic neurotoxin, N-methyl(R)salsolinol. Neurosci Lett 212:183–186

    Article  PubMed  CAS  Google Scholar 

  • Toth BE, Bodnar I, Homicsko KG, Fulop F, Fekete MI, Nagy GM (2002) Physiological role of salsolinol: its hypophysiotrophic function in the regulation of pituitary prolactin secretion. Neurotoxicol Teratol 24:655–666

    Article  PubMed  CAS  Google Scholar 

  • Homicsko KG, Kertesz I, Radnai B, Toth BE, Toth G, Fulop F et al (2003) Binding site of salsolinol: its properties in different regions of the brain and the pituitary gland of the rat. Neurochem Int 42:19–26

    Article  PubMed  CAS  Google Scholar 

  • Maruyama W, Benedetti MS, Takahashi T, Naoi M (1997) A neurotoxin N-methyl(R)salsolinol induces apoptotic cell death in differentiated human dopaminergic neuroblastoma SH-SY5Y cells. Neurosci Lett 232:147–150

    Article  PubMed  CAS  Google Scholar 

  • Roessner V, Walitza S, Riederer F, Hunnerkopf R, Rothenberger A, Gerlach M et al (2007) Tetrahydroisoquinoline derivatives: a new perspective on monoaminergic dysfunction in children with ADHD? Behav Brain Funct 3:64

    Article  PubMed  Google Scholar 

  • Maruyama Y, Suzuki Y, Kazusaka A, Fujita S (2001) Uptake of the dopaminergic neurotoxin, norsalsolinol, into PC12 cells via dopamine transporter. Arch Toxicol 75:209–213

    Article  PubMed  CAS  Google Scholar 

  • Maruyama Y, Suzuki Y, Kazusaka A, Fujita S (2001) Norsalsolinol uptake into secretory vesicles via vesicular monoamine transporter and its secretion by membrane depolarization or purinoceptor stimulation in PC12 cells. J Vet Med Sci 63:493–497

    Article  PubMed  CAS  Google Scholar 

  • Zhu W, Wang D, Zheng J, An Y, Wang Q, Zhang W et al (2008) Effect of (R)-salsolinol and N-methyl-(R)-salsolinol on the balance impairment between dopamine and acetylcholine in rat brain: involvement in pathogenesis of Parkinson disease. Clin Chem 54:705–712

    Article  PubMed  CAS  Google Scholar 

  • Naoi M, Maruyama W, Nagy GM (2004) Dopamine-derived salsolinol derivatives as endogenous monoamine oxidase inhibitors: occurrence, metabolism and function in human brains. Neurotoxicology 25:193–204

    Article  PubMed  CAS  Google Scholar 

  • Bembenek ME, Abell CW, Chrisey LA, Rozwadowska MD, Gessner W, Brossi A (1990) Inhibition of monoamine oxidases A and B by simple isoquinoline alkaloids: racemic and optically active 1,2,3,4-tetrahydro-, 3,4-dihydro-, and fully aromatic isoquinolines. J Med Chem 33:147–152

    Article  PubMed  CAS  Google Scholar 

  • Minami M, Takahashi T, Maruyama W, Takahashi A, Dostert P, Nagatsu T et al (1992) Inhibition of tyrosine hydroxylase by R and S enantiomers of salsolinol, 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline. J Neurochem 58:2097–2101

    Article  PubMed  CAS  Google Scholar 

  • Talhout R, Opperhuizen A, van Amsterdam JG (2007) Role of acetaldehyde in tobacco smoke addiction. Eur Neuropsychopharmacol 17:627–636

    Article  PubMed  CAS  Google Scholar 

  • Airaksinen MM, Kari I (1981) Beta-carbolines, psychoactive compounds in the mammalian body. Part I: Occurrence, origin and metabolism. Med Biol 59:21–34

    PubMed  CAS  Google Scholar 

  • Gambelunghe C, Aroni K, Rossi R, Moretti L, Bacci M (2008) Identification of N,N-dimethyltryptamine and beta-carbolines in psychotropic ayahuasca beverage. Biomed Chromatogr 22:1056–1059

    Article  PubMed  CAS  Google Scholar 

  • Polc P, Bonetti EP, Schaffner R, Haefely W (1982) A three-state model of the benzodiazepine receptor explains the interactions between the benzodiazepine antagonist Ro 15–1788, benzodiazepine tranquilizers, beta-carbolines, and phenobarbitone. Naunyn Schmiedebergs Arch Pharmacol 321:260–264

    Article  PubMed  CAS  Google Scholar 

  • Airaksinen MM, Kari I (1981) beta-Carbolines, psychoactive compounds in the mammalian body. Part II: Effects. Med Biol 59:190–211

    PubMed  CAS  Google Scholar 

  • Airaksinen MM, Svensk H, Tuomisto J, Komulainen H (1980) Tetrahydro-beta-carbolines and corresponding tryptamines: In vitro inhibition of serotonin and dopamine uptake by human blood platelets. Acta Pharmacol Toxicol (Copenh) 46:308–313

    CAS  Google Scholar 

  • Collins MA, Neafsey EJ (1985) Beta-carboline analogs of N-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP): endogenous factors underlying idiopathic parkinsonism? Neurosci Lett 55:179–184

    Article  PubMed  CAS  Google Scholar 

  • Matsubara K, Gonda T, Sawada H, Uezono T, Kobayashi Y, Kawamura T et al (1998) Endogenously occurring beta-carboline induces parkinsonism in nonprimate animals: a possible causative protoxin in idiopathic Parkinson's disease. J Neurochem 70:727–735

    Article  PubMed  CAS  Google Scholar 

  • Pless G, Frederiksen TJ, Garcia JJ, Reiter RJ (1999) Pharmacological aspects of N-acetyl-5-methoxytryptamine (melatonin) and 6-methoxy-1,2,3,4-tetrahydro-beta-carboline (pinoline) as antioxidants: reduction of oxidative damage in brain region homogenates. J Pineal Res 26:236–246

    Article  PubMed  CAS  Google Scholar 

  • Ary TE, Komiskey HL (1980) Phencyclidine: effect on the accumulation of 3H-dopamine in synaptic vesicles. Life Sci 26:575–578

    Article  PubMed  CAS  Google Scholar 

  • Jones SR, Gainetdinov RR, Wightman RM, Caron MG (1998) Mechanisms of amphetamine action revealed in mice lacking the dopamine transporter. J Neurosci 18:1979–1986

    PubMed  CAS  Google Scholar 

  • Sulzer D, Chen TK, Lau YY, Kristensen H, Rayport S, Ewing A (1995) Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport. J Neurosci 15:4102–4108

    PubMed  CAS  Google Scholar 

  • Sulzer D, Pothos E, Sung HM, Maidment NT, Hoebel BG, Rayport S (1992) Weak base model of amphetamine action. Ann N Y Acad Sci 654:525–528

    Article  PubMed  CAS  Google Scholar 

  • Sulzer D, Maidment NT, Rayport S (1993) Amphetamine and other weak bases act to promote reverse transport of dopamine in ventral midbrain neurons. J Neurochem 60:527–535

    Article  PubMed  CAS  Google Scholar 

  • Larsen KE, Fon EA, Hastings TG, Edwards RH, Sulzer D (2002) Methamphetamine-induced degeneration of dopaminergic neurons involves autophagy and upregulation of dopamine synthesis. J Neurosci 22:8951–8960

    PubMed  CAS  Google Scholar 

  • Kita T, Matsunari Y, Saraya T, Shimada K, O'Hara K, Kubo K et al (2000) Methamphetamine-induced striatal dopamine release, behavior changes and neurotoxicity in BALB/c mice. Int J Dev Neurosci 18:521–530

    Article  PubMed  CAS  Google Scholar 

  • Kahlig KM, Binda F, Khoshbouei H, Blakely RD, McMahon DG, Javitch JA et al (2005) Amphetamine induces dopamine efflux through a dopamine transporter channel. Proc Natl Acad Sci USA 102:3495–3500

    Article  PubMed  CAS  Google Scholar 

  • Eshleman AJ, Henningsen RA, Neve KA, Janowsky A (1994) Release of dopamine via the human transporter. Mol Pharmacol 45:312–316

    PubMed  CAS  Google Scholar 

  • Mosharov EV, Gong LW, Khanna B, Sulzer D, Lindau M (2003) Intracellular patch electrochemistry: regulation of cytosolic catecholamines in chromaffin cells. J Neurosci 23:5835–5845

    PubMed  CAS  Google Scholar 

  • Eyerman DJ, Yamamoto BK (2007) A rapid oxidation and persistent decrease in the vesicular monoamine transporter 2 after methamphetamine. J Neurochem 103:1219–1227

    Article  PubMed  CAS  Google Scholar 

  • Brown JM, Riddle EL, Sandoval V, Weston RK, Hanson JE, Crosby MJ et al (2002) A single methamphetamine administration rapidly decreases vesicular dopamine uptake. J Pharmacol Exp Ther 302:497–501

    Article  PubMed  CAS  Google Scholar 

  • Hansen JP, Riddle EL, Sandoval V, Brown JM, Gibb JW, Hanson GR et al (2002) Methylenedioxymethamphetamine decreases plasmalemmal and vesicular dopamine transport: mechanisms and implications for neurotoxicity. J Pharmacol Exp Ther 300:1093–1100

    Article  PubMed  CAS  Google Scholar 

  • Weingarten P, Zhou QY (2001) Protection of intracellular dopamine cytotoxicity by dopamine disposition and metabolism factors. J Neurochem 77:776–785

    Article  PubMed  CAS  Google Scholar 

  • Wagner GC, Ricaurte GA, Seiden LS, Schuster CR, Miller RJ, Westley J (1980) Long-lasting depletions of striatal dopamine and loss of dopamine uptake sites following repeated administration of methamphetamine. Brain Res 181:151–160

    Article  PubMed  CAS  Google Scholar 

  • Guillot TS, Shepherd KR, Richardson JR, Wang MZ, Li Y, Emson PC et al (2008) Reduced vesicular storage of dopamine exacerbates methamphetamine-induced neurodegeneration and astrogliosis. J Neurochem 106:2205–2217

    Article  PubMed  CAS  Google Scholar 

  • Ricaurte GA, Seiden LS, Schuster CR (1984) Further evidence that amphetamines produce long-lasting dopamine neurochemical deficits by destroying dopamine nerve fibers. Brain Res 303:359–364

    Article  PubMed  CAS  Google Scholar 

  • Cadet JL, Krasnova IN, Jayanthi S, Lyles J (2007) Neurotoxicity of substituted amphetamines: molecular and cellular mechanisms. Neurotox Res 11:183–202

    Article  PubMed  CAS  Google Scholar 

  • Fumagalli F, Gainetdinov RR, Wang YM, Valenzano KJ, Miller GW, Caron MG (1999) Increased methamphetamine neurotoxicity in heterozygous vesicular monoamine transporter 2 knock-out mice. J Neurosci 19:2424–2431

    PubMed  CAS  Google Scholar 

  • Terland O, Almas B, Flatmark T, Andersson KK, Sorlie M (2006) One-electron oxidation of catecholamines generates free radicals with an in vitro toxicity correlating with their lifetime. Free Radic Biol Med 41:1266–1271

    Article  PubMed  CAS  Google Scholar 

  • Ugarte YV, Rau KS, Riddle EL, Hanson GR, Fleckenstein AE (2003) Methamphetamine rapidly decreases mouse vesicular dopamine uptake: role of hyperthermia and dopamine D2 receptors. Eur J Pharmacol 472:165–171

    Article  PubMed  CAS  Google Scholar 

  • Vergo S, Johansen JL, Leist M, Lotharius J (2007) Vesicular monoamine transporter 2 regulates the sensitivity of rat dopaminergic neurons to disturbed cytosolic dopamine levels. Brain Res 1185:18–32

    Article  PubMed  CAS  Google Scholar 

  • Guillot TS, Richardson JR, Wang MZ, Li YJ, Taylor TN, Ciliax BJ et al (2008) PACAP38 increases vesicular monoamine transporter 2 (VMAT2) expression and attenuates methamphetamine toxicity. Neuropeptides 42:423–434

    Article  PubMed  CAS  Google Scholar 

  • Parker EM, Cubeddu LX (1988) Comparative effects of amphetamine, phenylethylamine and related drugs on dopamine efflux, dopamine uptake and mazindol binding. J Pharmacol Exp Ther 245:199–210

    PubMed  CAS  Google Scholar 

  • Anderson MC, Hasan F, McCrodden JM, Tipton KF (1993) Monoamine oxidase inhibitors and the cheese effect. Neurochem Res 18:1145–1149

    Article  PubMed  CAS  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4