A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://doi.org/10.1007/s11302-007-9078-7 below:

P2 receptors in cardiovascular regulation and disease

  • Drury A, Szent-Györgyi A (1929) The physiological activity of adenine compounds with special reference to their action upon the mammalian heart. J Physiol 68:213–237

    PubMed  CAS  Google Scholar 

  • Burnstock G (1978) A basis for distinguishing two types of purinergic receptor. In: Straub RW (ed) Cell membrane receptors for drugs and hormones: a multidisciplinary approach. Raven, New York, pp 107–118

    Google Scholar 

  • Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24:509–581

    PubMed  CAS  Google Scholar 

  • Burnstock G (1997) The past, present and future of purine nucleotides as signalling molecules. Neuropharmacology 36:1127–1139

    PubMed  CAS  Google Scholar 

  • Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    PubMed  CAS  Google Scholar 

  • Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797

    PubMed  CAS  Google Scholar 

  • Gordon JL (1986) Extracellular ATP: effects, sources and fate. Biochem J 233:309–319

    PubMed  CAS  Google Scholar 

  • Zimmermann H (2006) Ectonucleotidases in the nervous system. Novartis Found Symp 276:113–128

    PubMed  CAS  Google Scholar 

  • Burnstock G, Kennedy C (1986) A dual function for adenosine 5’-triphosphate in the regulation of vascular tone. Excitatory cotransmitter with noradrenaline from perivascular nerves and locally released inhibitory intravascular agent. Circ Res 58:319–330

    PubMed  CAS  Google Scholar 

  • Olsson RA, Pearson JD (1990) Cardiovascular purinoceptors. Physiol Rev 70:761–845

    PubMed  CAS  Google Scholar 

  • Ralevic V, Burnstock G (1991) Roles of P2-purinoceptors in the cardiovascular system. Circulation 84:1–14

    PubMed  CAS  Google Scholar 

  • Erlinge D (1998) Extracellular ATP: a growth factor for vascular smooth muscle cells. Gen Pharmacol 31:1–8

    PubMed  CAS  Google Scholar 

  • Burnstock G (2002) Purinergic signalling and vascular cell proliferation and death. Arterioscler Thromb Vasc Biol 22:364–373

    PubMed  Google Scholar 

  • Di Virgilio F, Solini A (2002) P2 receptors: new potential players in atherosclerosis. Br J Pharmacol 135:831–842

    PubMed  Google Scholar 

  • Gachet C (2006) Regulation of platelet functions by P2 receptors. Annu Rev Pharmacol Toxicol 46:277–300

    PubMed  CAS  Google Scholar 

  • Agteresch HJ, Dagnelie PC, van den Berg JW et al (1999) Adenosine triphosphate: established and potential clinical applications. Drugs 58:211–232

    PubMed  CAS  Google Scholar 

  • Ralevic V, Burnstock G (2003) Involvement of purinergic signaling in cardiovascular diseases. Drug News Perspect 16:133–140

    PubMed  CAS  Google Scholar 

  • Atkinson B, Dwyer K, Enjyoji K et al (2006) Ecto-nucleotidases of the CD39/NTPDase family modulate platelet activation and thrombus formation: potential as therapeutic targets. Blood Cells Mol Dis 36:217–222

    PubMed  CAS  Google Scholar 

  • Burnstock G (2006) Pathophysiology and therapeutic potential of purinergic signaling. Pharmacol Rev 58:58–86

    PubMed  CAS  Google Scholar 

  • Burnstock G (1976) Do some nerve cells release more than one transmitter? Neuroscience 1:239–248

    PubMed  CAS  Google Scholar 

  • Burnstock G (1988) Sympathetic purinergic transmission in small blood vessels. Trends Pharmacol Sci 9:116–117

    PubMed  CAS  Google Scholar 

  • Burnstock G (1987) Local control of blood pressure by purines. Blood Vessels 24:156–160

    PubMed  CAS  Google Scholar 

  • Burnstock G (1988) Local purinergic regulation of blood pressure (The First John T. Shepherd Lecture). In: Vanhoutte PM (ed) Vasodilatation: vascular smooth muscle, peptides, autonomic nerves, and endothelium. Raven, New York, pp 1–14

    Google Scholar 

  • Burnstock G (1990) Local mechanisms of blood flow control by perivascular nerves and endothelium. J Hypertens Suppl 8:S95–S106

    PubMed  CAS  Google Scholar 

  • Burnstock G (1990) Noradrenaline and ATP as cotransmitters in sympathetic nerves. Neurochem Int 17:357–368

    CAS  Google Scholar 

  • Burnstock G (1996) A unifying purinergic hypothesis for the initiation of pain. Lancet 347:1604–1605

    PubMed  CAS  Google Scholar 

  • Burnstock G (1993) Introduction: changing face of autonomic and sensory nerves in the circulation. In: Edvinsson L, Uddman R (eds) Vascular innervation and receptor mechanisms: new perspectives. Academic, New York, pp 1–22

    Google Scholar 

  • Rubino A, Burnstock G (1996) Capsaicin-sensitive sensory-motor neurotransmission in the peripheral control of cardiovascular function. Cardiovasc Res 31:467–479

    PubMed  CAS  Google Scholar 

  • Vial C, Evans RJ (2002) P2X1 receptor-deficient mice establish the native P2X receptor and a P2Y6-like receptor in arteries. Mol Pharmacol 62:1438–1445

    PubMed  CAS  Google Scholar 

  • Ramme D, Regenold JT, Starke K et al (1987) Identification of the neuroeffector transmitter in jejunal branches of the rabbit mesenteric artery. Naunyn Schmiedebergs Arch Pharmacol 336:267–273

    PubMed  CAS  Google Scholar 

  • Chan CM, Unwin RJ, Bardini M et al (1998) Localization of P2X1 purinoceptors by autoradiography and immunohistochemistry in rat kidneys. Am J Physiol 274:F799–F804

    PubMed  CAS  Google Scholar 

  • Inscho EW, Cook AK, Imig JD et al (2004) Renal autoregulation in P2X1 knockout mice. Acta Physiol Scand 181:445–453

    PubMed  CAS  Google Scholar 

  • Inscho EW, Cook AK, Imig JD et al (2003) Physiological role for P2X1 receptors in renal microvascular autoregulatory behavior. J Clin Invest 112:1895–1905

    PubMed  CAS  Google Scholar 

  • Boehm S, Huck S (1997) Receptors controlling transmitter release from sympathetic neurons in vitro. Prog Neurobiol 51:225–242

    PubMed  CAS  Google Scholar 

  • Cunha R (2001) Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: different roles, different sources and different receptors. Neurochem Int 38:107–125

    PubMed  CAS  Google Scholar 

  • Todorov LD, Mihaylova-Todorova S, Westfall TD et al (1997) Neuronal release of soluble nucleotidases and their role in neurotransmitter inactivation. Nature 387:76–79

    PubMed  CAS  Google Scholar 

  • Rosenmeier JB, Hansen J, Gonzalez-Alonso J (2004) Circulating ATP-induced vasodilatation overrides sympathetic vasoconstrictor activity in human skeletal muscle. J Physiol 558:351–365

    PubMed  CAS  Google Scholar 

  • Burnstock G, Kennedy C (1985) Is there a basis for distinguishing two types of P2-purinoceptor? Gen Pharmacol 16:433–440

    PubMed  CAS  Google Scholar 

  • Lewis CJ, Evans RJ (2000) Comparison of P2X receptors in rat mesenteric, basilar and septal (coronary) arteries. J Auton Nerv Syst 81:69–74

    PubMed  CAS  Google Scholar 

  • Wang L, Karlsson L, Moses S et al (2002) P2 receptor expression profiles in human vascular smooth muscle and endothelial cells. J Cardiovasc Pharmacol 40:841–853

    PubMed  CAS  Google Scholar 

  • von Kügelgen I, Haussinger D, Starke K (1987) Evidence for a vasoconstriction-mediating receptor for UTP, distinct from the P2 purinoceptor, in rabbit ear artery. Naunyn Schmiedebergs Arch Pharmacol 336:556–560

    Google Scholar 

  • Malmsjö M, Adner M, Harden TK et al (2000) The stable pyrimidines UDPβS and UTPγS discriminate between the P2 receptors that mediate vascular contraction and relaxation of the rat mesenteric artery. Br J Pharmacol 131:51–56

    PubMed  Google Scholar 

  • Sévigny J et al (2006) Co-ordinated regulation of P2-receptor signaling by membrane bound NTPDases. Purinergic Signalling 2:53

    Google Scholar 

  • Borna C, Wang L, Gudbjartsson T et al (2003) Contractions in human coronary bypass vessels stimulated by extracellular nucleotides. Ann Thorac Surg 76:50–57

    PubMed  Google Scholar 

  • Brinson AE, Harden TK (2001) Differential regulation of the uridine nucleotide-activated P2Y4 and P2Y6 receptors. SER-333 and SER-334 in the carboxyl terminus are involved in agonist-dependent phosphorylation desensitization and internalization of the P2Y4 receptor. J Biol Chem 276:11939–11948

    PubMed  CAS  Google Scholar 

  • Wihlborg AK, Wang L, Braun OO et al (2004) ADP receptor P2Y12 is expressed in vascular smooth muscle cells and stimulates contraction in human blood vessels. Arterioscler Thromb Vasc Biol 24:1810–1815

    PubMed  CAS  Google Scholar 

  • Burnstock G (1999) Release of vasoactive substances from endothelial cells by shear stress and purinergic mechanosensory transduction. J Anat 194:335–342

    PubMed  CAS  Google Scholar 

  • Malmsjö M, Edvinsson L, Erlinge D (1998) P2U-receptor mediated endothelium-dependent but nitric oxide-independent vascular relaxation. Br J Pharmacol 123:719–729

    PubMed  Google Scholar 

  • Malmsjö M, Erlinge D, Högestätt ED et al (1999) Endothelial P2Y receptors induce hyperpolarisation of vascular smooth muscle by release of endothelium-derived hyperpolarising factor. Eur J Pharmacol 364:169–173

    PubMed  Google Scholar 

  • Mistry H, Gitlin JM, Mitchell JA et al (2003) Endothelium-dependent relaxation and endothelial hyperpolarization by P2Y receptor agonists in rat-isolated mesenteric artery. Br J Pharmacol 139:661–671

    PubMed  CAS  Google Scholar 

  • Hrafnkelsdottir T, Erlinge D, Jern S (2001) Extracellular nucleotides ATP and UTP induce a marked acute release of tissue-type plasminogen activator in vivo in man. Thromb Haemost 85:875–881

    PubMed  CAS  Google Scholar 

  • Wihlborg AK, Malmsjö M, Eyjolfsson A et al (2003) Extracellular nucleotides induce vasodilatation in human arteries via prostaglandins, nitric oxide and endothelium-derived hyperpolarising factor. Br J Pharmacol 138:1451–1458

    PubMed  CAS  Google Scholar 

  • Guns PJ, Korda A, Crauwels HM et al (2005) Pharmacological characterization of nucleotide P2Y receptors on endothelial cells of the mouse aorta. Br J Pharmacol 146:288–295

    PubMed  CAS  Google Scholar 

  • Yamamoto K, Korenaga R, Kamiya A et al (2000) P2X4 receptors mediate ATP-induced calcium influx in human vascular endothelial cells. Am J Physiol Heart Circ Physiol 279:H285–H292

    PubMed  CAS  Google Scholar 

  • Yamamoto K, Korenaga R, Kamiya A et al (2000) Fluid shear stress activates Ca2+ influx into human endothelial cells via P2X4 purinoceptors. Circ Res 87:385–391

    PubMed  CAS  Google Scholar 

  • Bodin P, Bailey D, Burnstock G (1991) Increased flow-induced ATP release from isolated vascular endothelial cells but not smooth muscle cells. Br J Pharmacol 103:1203–1205

    PubMed  CAS  Google Scholar 

  • Yamamoto K, Sokabe T, Matsumoto T et al (2006) Impaired flow-dependent control of vascular tone and remodeling in P2X4-deficient mice. Nat Med 12:133–137

    PubMed  CAS  Google Scholar 

  • Kaczmarek E, Koziak K, Sévigny J et al (1996) Identification and characterization of CD39/vascular ATP diphosphohydrolase. J Biol Chem 271:33116–33122

    PubMed  CAS  Google Scholar 

  • Yegutkin G, Bodin P, Burnstock G (2000) Effect of shear stress on the release of soluble ecto-enzymes ATPase and 5’-nucleotidase along with endogenous ATP from vascular endothelial cells. Br J Pharmacol 129:921–926

    PubMed  CAS  Google Scholar 

  • Vassort G (2001) Adenosine 5’-triphosphate: a P2-purinergic agonist in the myocardium. Physiol Rev 81:767–806

    PubMed  CAS  Google Scholar 

  • Saito D, Steinhart CR, Nixon DC et al (1981) Intracoronary adenosine deaminase reduces canine myocardial reactive hyperemia. Circ Res 49:1262–1267

    PubMed  CAS  Google Scholar 

  • Zatta AJ, Headrick JP (2005) Mediators of coronary reactive hyperaemia in isolated mouse heart. Br J Pharmacol 144:576–587

    PubMed  CAS  Google Scholar 

  • Olivecrona GK et al (2006) Coronary artery reperfusion: the ADP receptor P2Y1 mediates early reactive hyperemia in vivo in pigs. Purinergic Signalling 1:59–64

    Google Scholar 

  • Ellsworth ML, Forrester T, Ellis CG et al (1995) The erythrocyte as a regulator of vascular tone. Am J Physiol 269:H2155–H2161

    PubMed  CAS  Google Scholar 

  • McMahon TJ, Moon RE, Luschinger BP et al (2002) Nitric oxide in the human respiratory cycle. Nat Med 8:711–717

    PubMed  CAS  Google Scholar 

  • Cosby K, Partovi KS, Crawford JH et al (2003) Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med 9:1498–1505

    PubMed  CAS  Google Scholar 

  • Bergfeld GR, Forrester T (1992) Release of ATP from human erythrocytes in response to a brief period of hypoxia and hypercapnia. Cardiovasc Res 26:40–47

    PubMed  CAS  Google Scholar 

  • Sprague RS (2001) Participation of cAMP in a signal-transduction pathway relating erythrocyte deformation to ATP release. Am J Physiol Cell Physiol 281:C1158–C1164

    PubMed  CAS  Google Scholar 

  • Sprague RS, Stephenson AH, Ellsworth ML et al (2001) Impaired release of ATP from red blood cells of humans with primary pulmonary hypertension. Exp Biol Med (Maywood) 226:434–439

    CAS  Google Scholar 

  • Dietrich HH, Ellsworth ML, Sprague RS et al (2000) Red blood cell regulation of microvascular tone through adenosine triphosphate. Am J Physiol Heart Circ Physiol 278:H1294–H1298

    PubMed  CAS  Google Scholar 

  • Gonzalez-Alonso J, Olsen DB, Saltin B (2002) Erythrocyte and the regulation of human skeletal muscle blood flow and oxygen delivery: role of circulating ATP. Circ Res 91:1046–1055

    PubMed  CAS  Google Scholar 

  • Farias M, Gorman MW, Savage MV et al (2005) Plasma ATP during exercise: possible role in regulation of coronary blood flow. Am J Physiol Heart Circ Physiol 288:H1586–H1590

    PubMed  CAS  Google Scholar 

  • Wang L, Olivecrona G, Götberg M et al (2005) ADP acting on P2Y13 receptors is a negative feedback pathway for ATP release from human red blood cells. Circ Res 96:189–196

    PubMed  CAS  Google Scholar 

  • Olearczyk JJ, Ellsworth ML, Stephenson AH et al (2004) Nitric oxide inhibits ATP release from erythrocytes. J Pharmacol Exp Ther 309:1079–1084

    PubMed  CAS  Google Scholar 

  • Trams EJ, Kauffman H, Burnstock G (1980) A proposal for the role of ecto-enzymes and adenylates in traumatic shock. J Theor Biol 87:609–621

    PubMed  CAS  Google Scholar 

  • Sluyter R, Shemon AN, Barden JA et al (2004) Extracellular ATP increases cation fluxes in human erythrocytes by activation of the P2X7 receptor. J Biol Chem 279:44749–44755

    PubMed  CAS  Google Scholar 

  • Bodin P, Burnstock G (1996) ATP-stimulated release of ATP by human endothelial cells. J Cardiovasc Pharmacol 27:872–875

    PubMed  CAS  Google Scholar 

  • Tanneur V, Duranton C, Brand VB (2006) Purinoceptors are involved in the induction of an osmolyte permeability in malaria-infected and oxidized human erythrocytes. FASEB J 20:133–135

    PubMed  CAS  Google Scholar 

  • Locovei S, Bao L, Dahl G (2006) Pannexin 1 in erythrocytes: function without a gap. Proc Natl Acad Sci USA 103:7655–7659

    PubMed  CAS  Google Scholar 

  • Vidal M, Hicks PE, Langer SZ (1986) Differential effects of α-β-methylene ATP on responses to nerve stimulation in SHR and WKY tail arteries. Naunyn Schmiedebergs Arch Pharmacol 332:384–390

    PubMed  CAS  Google Scholar 

  • Brock JA, Van Helden DF (1995) Enhanced excitatory junction potentials in mesenteric arteries from spontaneously hypertensive rats. Pflugers Arch 430:901–908

    PubMed  CAS  Google Scholar 

  • Fernandez O, Wangensteen R, Osuna A et al (2000) Renal vascular reactivity to P2-purinoceptor activation in spontaneously hypertensive rats. Pharmacology 60:47–50

    PubMed  CAS  Google Scholar 

  • Galligan JJ, Hess MC, Miller SB et al (2001) Differential localization of P2 receptor subtypes in mesenteric arteries and veins of normotensive and hypertensive rats. J Pharmacol Exp Ther 296:478–485

    PubMed  CAS  Google Scholar 

  • Yang D, Gluais P, Zhang JN et al (2004) Endothelium-dependent contractions to acetylcholine, ATP and the calcium ionophore A 23187 in aortas from spontaneously hypertensive and normotensive rats. Fundam Clin Pharmacol 18:321–326

    PubMed  CAS  Google Scholar 

  • Vonend O, Turner CM, Chan CM et al (2004) Glomerular expression of the ATP-sensitive P2X receptor in diabetic and hypertensive rat models. Kidney Int 66:157–166

    PubMed  CAS  Google Scholar 

  • Schluter H, Offers E, Brüggemann G et al (1994) Diadenosine phosphates and the physiological control of blood pressure. Nature 367:186–188

    PubMed  CAS  Google Scholar 

  • Hollah P, Hausberg M, Kosch M et al (2001) A novel assay for determination of diadenosine polyphosphates in human platelets: studies in normotensive subjects and in patients with essential hypertension. J Hypertens 19:237–245

    PubMed  CAS  Google Scholar 

  • Jankowski V, Tölle M, Vanholder R et al (2005) Uridine adenosine tetraphosphate: a novel endothelium- derived vasoconstrictive factor. Nat Med 11:223–227

    PubMed  CAS  Google Scholar 

  • Roberts VH, Webster RP, Brockman DE et al (2006) Post-translational modifications of the P2X4 purinergic receptor subtype in the human placenta are altered in preeclampsia. Placenta 28:270–277

    PubMed  Google Scholar 

  • Sprague RS, Olearczyk JJ, Spence DM et al (2003) Extracellular ATP signaling in the rabbit lung: erythrocytes as determinants of vascular resistance. Am J Physiol Heart Circ Physiol 285:H693–H700

    PubMed  CAS  Google Scholar 

  • Greenberg B, Rhoden K, Barnes PJ (1987) Endothelium-dependent relaxation of human pulmonary arteries. Am J Physiol 252:H434–H438

    PubMed  CAS  Google Scholar 

  • Zhang S, Remillard CV, Fantozzi I et al (2004) ATP-induced mitogenesis is mediated by cyclic AMP response element-binding protein-enhanced TRPC4 expression and activity in human pulmonary artery smooth muscle cells. Am J Physiol Cell Physiol 287:C1192–C1201

    PubMed  CAS  Google Scholar 

  • Malmsjö M, Hou M, Pendergast W et al (2003) Potent P2Y6 receptor mediated contractions in human cerebral arteries. BMC Pharmacol 3:4

    PubMed  Google Scholar 

  • Burnstock G (1989) The role of adenosine triphosphate in migraine. Biomed Pharmacother 43:727–736

    PubMed  CAS  Google Scholar 

  • Waeber C, Moskowitz MA (2003) Therapeutic implications of central and peripheral neurologic mechanisms in migraine. Neurology 61:S9–S20

    PubMed  Google Scholar 

  • Fabbretti E, D’Arco M, Fabbro A et al (2006) Delayed upregulation of ATP P2X3 receptors of trigeminal sensory neurons by calcitonin gene-related peptide. J Neurosci 26:6163–6171

    PubMed  CAS  Google Scholar 

  • Peroutka SJ (2004) Migraine: a chronic sympathetic nervous system disorder. Headache 44:53–64

    PubMed  Google Scholar 

  • Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352:1685–1695

    PubMed  CAS  Google Scholar 

  • Hashimoto M, Shinozuka K, Shahdat HM et al (1998) Antihypertensive effect of all-cis-5,8,11,14,17-icosapentaenoate of aged rats is associated with an increase in the release of ATP from the caudal artery. J Vasc Res 35:55–62

    PubMed  CAS  Google Scholar 

  • Hashimoto M, Shinozuka K, Tanabe Y et al (1998) Long-term supplementation with a high cholesterol diet decreases the release of ATP from the caudal artery in aged rats. Life Sci 63:1879–1885

    PubMed  CAS  Google Scholar 

  • Karoon P, Burnstock G (1998) Reduced sympathetic noradrenergic neurotransmission in the tail artery of Donryu rats fed with high cholesterol-supplemented diet. Br J Pharmacol 123:1016–1021

    PubMed  CAS  Google Scholar 

  • Di Virgilio F, Chiozzi P, Ferrari D et al (2001) Nucleotide receptors: an emerging family of regulatory molecules in blood cells. Blood 97:587–600

    PubMed  Google Scholar 

  • Wang L, Jacobsen SE, Bengtsson A et al (2004) P2 receptor mRNA expression profiles in human lymphocytes, monocytes and CD34+ stem and progenitor cells. BMC Immunol 5:16

    PubMed  Google Scholar 

  • Baricordi OR, Ferrari D, Melchiorri L et al (1996) An ATP-activated channel is involved in mitogenic stimulation of human T lymphocytes. Blood 87:682–690

    PubMed  CAS  Google Scholar 

  • Kawamura H, Aswad F, Minagawa M et al (2005) P2X7 receptor-dependent and -independent T cell death is induced by nicotinamide adenine dinucleotide. J Immunol 174:1971–1979

    PubMed  CAS  Google Scholar 

  • Ferrari D, Chiozzi P, Falzoni S et al (1997) Extracellular ATP triggers IL-1β release by activating the purinergic P2Z receptor of human macrophages. J Immunol 159:1451–1458

    PubMed  CAS  Google Scholar 

  • Suzuki T, Hide I, Ido K et al (2004) Production and release of neuroprotective tumor necrosis factor by P2X7 receptor-activated microglia. J Neurosci 24:1–7

    PubMed  CAS  Google Scholar 

  • Gu B, Bendall LJ, Wiley JS (1998) Adenosine triphosphate-induced shedding of CD23 and L-selectin (CD62L) from lymphocytes is mediated by the same receptor but different metalloproteases. Blood 92:946–951

    PubMed  CAS  Google Scholar 

  • Labasi JM, Petrushova N, Donovan C et al (2002) Absence of the P2X7 receptor alters leukocyte function and attenuates an inflammatory response. J Immunol 168:6436–6445

    PubMed  CAS  Google Scholar 

  • Idzko M, Dichmann S, Ferrari D et al (2002) Nucleotides induce chemotaxis and actin polymerization in immature but not mature human dendritic cells via activation of pertussis toxin-sensitive P2y receptors. Blood 100:925–932

    PubMed  CAS  Google Scholar 

  • Schmid-Antomarchi H, Schmid-Alliana A, Romey G et al (1997) Extracellular ATP and UTP control the generation of reactive oxygen intermediates in human macrophages through the opening of a charybdotoxin-sensitive Ca2+-dependent K+ channel. J Immunol 159:6209–6215

    PubMed  CAS  Google Scholar 

  • Hechler B et al (2006) Reduced atherosclerotic lesions in P2Y1/ApoE double knockout mice. Purinergic Signalling 2:299

    Google Scholar 

  • Duhant X, Schandené L, Bruyns C et al (2002) Extracellular adenine nucleotides inhibit the activation of human CD4+ T lymphocytes. J Immunol 169:15–21

    PubMed  CAS  Google Scholar 

  • Kaufmann A, Musset B, Limberg SH et al (2005) “Host tissue damage” signal ATP promotes non-directional migration and negatively regulates toll-like receptor signaling in human monocytes. J Biol Chem 280:32459–32467

    PubMed  CAS  Google Scholar 

  • Marteau F, Gonzalez NS, Communi D et al (2005) Thrombospondin-1 and indoleamine 2,3-dioxygenase are major targets of extracellular ATP in human dendritic cells. Blood 106:3860–3866

    PubMed  CAS  Google Scholar 

  • Amisten S, Melander O, Wihlborg AK et al (2006) Increased risk of acute myocardial infarction and elevated levels of C-reactive protein in carriers of the Thr-87 variant of the ATP receptor P2Y11. Eur Heart J 28:13–18

    PubMed  Google Scholar 

  • Dawicki DD, McGowan-Jordan J, Bullard S et al (1995) Extracellular nucleotides stimulate leukocyte adherence to cultured pulmonary artery endothelial cells. Am J Physiol 268:L666–L673

    PubMed  CAS  Google Scholar 

  • Seiffert K, Ding W, Wagner JA et al (2006) ATPγS enhances the production of inflammatory mediators by a human dermal endothelial cell line via purinergic receptor signaling. J Invest Dermatol 126:1017–1027

    PubMed  CAS  Google Scholar 

  • Seye CI, Yu N, Jain R et al (2003) The P2Y2 nucleotide receptor mediates UTP-induced vascular cell adhesion molecule-1 expression in coronary artery endothelial cells. J Biol Chem 278:24960–24965

    PubMed  CAS  Google Scholar 

  • Seye CI, Yu N, González FA et al (2004) The P2Y2 nucleotide receptor mediates vascular cell adhesion molecule-1 expression through interaction with VEGF receptor-2 (KDR/Flk-1). J Biol Chem 279:35679–35686

    PubMed  CAS  Google Scholar 

  • Seye CI, Kong Q, Erb L et al (2002) Functional P2Y2 nucleotide receptors mediate uridine 5’-triphosphate-induced intimal hyperplasia in collared rabbit carotid arteries. Circulation 106:2720–2726

    PubMed  CAS  Google Scholar 

  • Hart MN, Heistad DD, Brody MJ (1980) Effect of chronic hypertension and sympathetic denervation on wall/lumen ratio of cerebral vessels. Hypertension 2:419–423

    PubMed  CAS  Google Scholar 

  • Erlinge D, Yoo H, Edvinsson L et al (1993) Mitogenic effects of ATP on vascular smooth muscle cells vs. other growth factors and sympathetic cotransmitters. Am J Physiol 265:H1089–H1097

    PubMed  CAS  Google Scholar 

  • Wang DJ, Huang NN, Heppel LA (1992) Extracellular ATP and ADP stimulate proliferation of porcine aortic smooth muscle cells. J Cell Physiol 153:221–233

    PubMed  CAS  Google Scholar 

  • Malam-Souley R, Seye C, Gadeau AP et al (1996) Nucleotide receptor P2u partially mediates ATP-induced cell cycle progression of aortic smooth muscle cells. J Cell Physiol 166:57–65

    PubMed  CAS  Google Scholar 

  • Erlinge D, You J, Wahlestedt C et al (1995) Characterisation of an ATP receptor mediating mitogenesis in vascular smooth muscle cells. Eur J Pharmacol 289:135–149

    PubMed  CAS  Google Scholar 

  • Hou M, Harden TK, Kuhn CM et al (2002) UDP acts as a growth factor for vascular smooth muscle cells by activation of P2Y6 receptors. Am J Physiol Heart Circ Physiol 282:H784–H792

    PubMed  CAS  Google Scholar 

  • Wilden PA, Agazie YM, Kaufman R et al (1998) ATP-stimulated smooth muscle cell proliferation requires independent ERK and PI3K signaling pathways. Am J Physiol 275:H1209–H1215

    PubMed  CAS  Google Scholar 

  • Sauzeau V, Le Jeune H, Cario-Toumaniantz C et al (2000) P2Y1, P2Y2, P2Y4, and P2Y6 receptors are coupled to Rho and Rho kinase activation in vascular myocytes. Am J Physiol Heart Circ Physiol 278:H1751–H1761

    PubMed  CAS  Google Scholar 

  • Miyagi Y, Kobayashi S, Ahmed A et al (1996) P2U purinergic activation leads to the cell cycle progression from the G1 to the S and M phases but not from the G0 to G1 phase in vascular smooth muscle cells in primary culture. Biochem Biophys Res Commun 222:652–658

    PubMed  CAS  Google Scholar 

  • Erlinge D, Brunkwall J, Edvinsson L (1994) Neuropeptide Y stimulates proliferation of human vascular smooth muscle cells: cooperation with noradrenaline and ATP. Regul Pept 50:259–265

    PubMed  CAS  Google Scholar 

  • Erb L, Liu J, Ockerhausen J et al (2001) An RGD sequence in the P2Y2 receptor interacts with αVβ3 integrins and is required for Go-mediated signal transduction. J Cell Biol 153:491–501

    PubMed  CAS  Google Scholar 

  • Robinson WP 3rd, Douillet CD, Milano PM et al (2006) ATP stimulates MMP-2 release from human aortic smooth muscle cells via JNK signaling pathway. Am J Physiol Heart Circ Physiol 290:H1988–H1996

    PubMed  CAS  Google Scholar 

  • Chaulet H, Desgranges C, Renault MA et al (2001) Extracellular nucleotides induce arterial smooth muscle cell migration via osteopontin. Circ Res 89:772–778

    PubMed  CAS  Google Scholar 

  • Koziak K et al (2006) Adenovirus-mediated over-expression of CD39 inhibits neointima formation in rat aorta. Purinergic Signalling 2:Addendum

  • Imai M, Takigami K, Guckelberger O et al (1999) Modulation of nucleoside triphosphate diphosphohydrolase-1 (NTPDase-1)cd39 in xenograft rejection. Mol Med 5:743–752

    PubMed  CAS  Google Scholar 

  • Pillois X, Chaulet H, Belloc I et al (2002) Nucleotide receptors involved in UTP-induced rat arterial smooth muscle cell migration. Circ Res 90:678–681

    PubMed  CAS  Google Scholar 

  • Ralevic V, Belai A, Burnstock G (1995) Effects of streptozotocin-diabetes on sympathetic nerve, endothelial and smooth muscle function in the rat mesenteric arterial bed. Eur J Pharmacol 286:193–199

    PubMed  CAS  Google Scholar 

  • Gür S, Ozturk B (2000) Altered relaxant responses to adenosine and adenosine 5’-triphosphate in the corpus cavernosum from men and rats with diabetes. Pharmacology 60:105–112

    PubMed  Google Scholar 

  • Sprague RS, Stephenson AH, Bowles EA et al (2006) Reduced expression of Gi in erythrocytes of humans with type 2 diabetes is associated with impairment of both cAMP generation and ATP release. Diabetes 55:3588–3593

    PubMed  CAS  Google Scholar 

  • Parodi J, Flores C, Aguayo C et al (2002) Inhibition of nitrobenzylthioinosine-sensitive adenosine transport by elevated D-glucose involves activation of P2Y2 purinoceptors in human umbilical vein endothelial cells. Circ Res 90:570–577

    PubMed  CAS  Google Scholar 

  • Hellman B, Dansk H, Grapengiesser E (2004) Pancreatic β-cells communicate via intermittent release of ATP. Am J Physiol Endocrinol Metab 286:E759–E765

    PubMed  CAS  Google Scholar 

  • Nilsson J, Nilsson LM, Chen YW et al (2006) High glucose activates nuclear factor of activated T cells in native vascular smooth muscle. Arterioscler Thromb Vasc Biol 26:794–800

    PubMed  CAS  Google Scholar 

  • Pacaud P, Malam-Souley R, Loirand G et al (1995) ATP raises [Ca2+]i via different P2-receptor subtypes in freshly isolated and cultured aortic myocytes. Am J Physiol 269:H30–H36

    PubMed  CAS  Google Scholar 

  • Erlinge D, Hou M, Webb TE et al (1998) Phenotype changes of the vascular smooth muscle cell regulate P2 receptor expression as measured by quantitative RT-PCR. Biochem Biophys Res Commun 248:864–870

    PubMed  CAS  Google Scholar 

  • Hou M, Möller S, Edvinsson L et al (1999) MAPKK-dependent growth factor-induced upregulation of P2Y2 receptors in vascular smooth muscle cells. Biochem Biophys Res Commun 258:648–652

    PubMed  CAS  Google Scholar 

  • Hou M, Möller S, Edvinsson L et al (2000) Cytokines induce upregulation of vascular P2Y2 receptors and increased mitogenic responses to UTP and ATP. Arterioscler Thromb Vasc Biol 20:2064–2069

    PubMed  CAS  Google Scholar 

  • Seye CI, Gadeau AP, Daret D et al (1997) Overexpression of P2Y2 purinoceptor in intimal lesions of the rat aorta. Arterioscler Thromb Vasc Biol 17:3602–3610

    PubMed  CAS  Google Scholar 

  • Shen J, Seye CI, Wang M et al (2004) Cloning, up-regulation, and mitogenic role of porcine P2Y2 receptor in coronary artery smooth muscle cells. Mol Pharmacol 66:1265–1274

    PubMed  CAS  Google Scholar 

  • Hogarth DK, Sandbo N, Taurin S et al (2004) Dual role of PKA in phenotypic modulation of vascular smooth muscle cells by extracellular ATP. Am J Physiol Cell Physiol 287:C449–C456

    PubMed  CAS  Google Scholar 

  • Wang L, Andersson M, Karlsson L et al (2003) Increased mitogenic and decreased contractile P2 receptors in smooth muscle cells by shear stress in human vessels with intact endothelium. Arterioscler Thromb Vasc Biol 23:1370–1376

    PubMed  CAS  Google Scholar 

  • Van Daele P, Van Coevorden A, Roger PP et al (1992) Effects of adenine nucleotides on the proliferation of aortic endothelial cells. Circ Res 70:82–90

    PubMed  Google Scholar 

  • Kaczmarek E, Erb L, Koziak K et al (2005) Modulation of endothelial cell migration by extracellular nucleotides: involvement of focal adhesion kinase and phosphatidylinositol 3-kinase-mediated pathways. Thromb Haemost 93:735–742

    PubMed  CAS  Google Scholar 

  • Gerasimovskaya EV, Davie NJ, Ahmad S et al (2005) Extracellular adenosine triphosphate: a potential regulator of vasa vasorum neovascularization in hypoxia-induced pulmonary vascular remodeling. Chest 128(6 Suppl):608S–610S

    PubMed  CAS  Google Scholar 

  • Eltzschig HK, Ibla JC, Furuta GT (2003) Coordinated adenine nucleotide phosphohydrolysis and nucleoside signaling in posthypoxic endothelium: role of ectonucleotidases and adenosine A2B receptors. J Exp Med 198:783–796

    PubMed  CAS  Google Scholar 

  • Goepfert C, Sundberg C, Sévigny J et al (2001) Disordered cellular migration and angiogenesis in cd39-null mice. Circulation 104:3109–3115

    PubMed  CAS  Google Scholar 

  • Cario-Toumaniantz C, Loirand G, Ladoux A et al (1998) P2X7 receptor activation-induced contraction and lysis in human saphenous vein smooth muscle. Circ Res 83:196–203

    PubMed  CAS  Google Scholar 

  • Metcalfe MJ, Baker DM, Burnstock G (2006) Purinoceptor expression on keratinocytes reflects their function in the epidermis during chronic venous insufficiency. Arch Dermatol Res 298:301–307

    PubMed  CAS  Google Scholar 

  • Clemens MG, Forrester T (1981) Appearance of adenosine triphosphate in the coronary sinus effluent from isolated working rat heart in response to hypoxia. J Physiol 312:143–158

    PubMed  CAS  Google Scholar 

  • Bogdanov Y, Rubino A, Burnstock G (1998) Characterisation of subtypes of the P2X and P2Y families of ATP receptors in the foetal human heart. Life Sci 62:697–703

    PubMed  CAS  Google Scholar 

  • Wihlborg AK, Balogh J, Wang L et al (2006) Positive inotropic effects by uridine triphosphate (UTP) and uridine diphosphate (UDP) via P2Y2 and P2Y6 receptors on cardiomyocytes and release of UTP in man during myocardial infarction. Circ Res 98:970–976

    PubMed  CAS  Google Scholar 

  • Danziger RS, Raffaeli S, Moreno-Sanchez R et al (1988) Extracellular ATP has a potent effect to enhance cytosolic calcium and contractility in single ventricular myocytes. Cell Calcium 9:193–199

    PubMed  CAS  Google Scholar 

  • Zheng JS, Boluyt MO, Long X et al (1996) Extracellular ATP inhibits adrenergic agonist-induced hypertrophy of neonatal cardiac myocytes. Circ Res 78:525–535

    PubMed  CAS  Google Scholar 

  • Podrasky E, Xu D, Liang BT (1997) A novel phospholipase C- and cAMP-independent positive inotropic mechanism via a P2 purinoceptor. Am J Physiol 273:H2380–H2387

    PubMed  CAS  Google Scholar 

  • Mei Q, Liang BT (2001) P2 purinergic receptor activation enhances cardiac contractility in isolated rat and mouse hearts. Am J Physiol Heart Circ Physiol 281:H334–H341

    PubMed  CAS  Google Scholar 

  • Froldi G, Pandolfo L, Chinellato A et al (1994) Dual effect of ATP and UTP on rat atria: which types of receptors are involved? Naunyn Schmiedebergs Arch Pharmacol 349:381–386

    PubMed  CAS  Google Scholar 

  • Scamps F, Vassort G (1994) Pharmacological profile of the ATP-mediated increase in L-type calcium current amplitude and activation of a non-specific cationic current in rat ventricular cells. Br J Pharmacol 113:982–986

    PubMed  CAS  Google Scholar 

  • Vahlensieck U, Bokník P, Gombosová I et al (1999) Inotropic effects of diadenosine tetraphosphate (AP4A) in human and animal cardiac preparations. J Pharmacol Exp Ther 288:805–813

    PubMed  CAS  Google Scholar 

  • Balogh J, Wihlborg AK, Isackson H et al (2005) Phospholipase C and cAMP-dependent positive inotropic effects of ATP in mouse cardiomyocytes via P2Y11-like receptors. J Mol Cell Cardiol 39:223–230

    PubMed  CAS  Google Scholar 

  • Flitney FW, Singh J (1980) Inotropic responses of the frog ventricle to adenosine triphosphate and related changes in endogenous cyclic nucleotides. J Physiol 304:21–42

    PubMed  CAS  Google Scholar 

  • Puceat M, Bony C, Jaconi M et al (1998) Specific activation of adenylyl cyclase V by a purinergic agonist. FEBS Lett 431:189–194

    PubMed  CAS  Google Scholar 

  • Communi D, Govaerts C, Parmentier M et al (1997) Cloning of a human purinergic P2Y receptor coupled to phospholipase C and adenylyl cyclase. J Biol Chem 272:31969–31973

    PubMed  CAS  Google Scholar 

  • Communi D, Robaye B, Boeynaems JM (1999) Pharmacological characterization of the human P2Y11 receptor. Br J Pharmacol 128:1199–1206

    PubMed  CAS  Google Scholar 

  • Zambon AC, Hughes RJ, Meszaros JG et al (2000) P2Y2 receptor of MDCK cells: cloning, expression, and cell-specific signaling. Am J Physiol Renal Physiol 279:F1045–F1052

    PubMed  CAS  Google Scholar 

  • Hou M, Malmsjö M, Möller S et al (1999) Increase in cardiac P2X1-and P2Y2-receptor mRNA levels in congestive heart failure. Life Sci 65:1195–1206

    PubMed  CAS  Google Scholar 

  • Froldi G, Varani K, Chinellato A et al (1997) P2X-purinoceptors in the heart: actions of ATP and UTP. Life Sci 60:1419–1430

    PubMed  CAS  Google Scholar 

  • Froldi G, Ragazzi E, Caparrotta L (2001) Do ATP and UTP involve cGMP in positive inotropism on rat atria? Comp Biochem Physiol C Toxicol Pharmacol 128:265–274

    PubMed  CAS  Google Scholar 

  • Erlinge D, Harnek J, van Heusden C et al (2005) Uridine triphosphate (UTP) is released during cardiac ischemia. Int J Cardiol 100:427–433

    PubMed  Google Scholar 

  • Borna C, Lazarowski E, van Heusden C et al (2005) Resistance to aspirin is increased by ST-elevation myocardial infarction and correlates with adenosine diphosphate levels. Thromb J 3:10

    PubMed  Google Scholar 

  • Kittel A, Kiss AL, Müllner N et al (2005) Expression of NTPDase1 and caveolins in human cardiovascular disease. Histochem Cell Biol 124:51–59

    PubMed  CAS  Google Scholar 

  • Gunduz D, Kasseckert SA, Härtel FV et al (2006) Accumulation of extracellular ATP protects against acute reperfusion injury in rat heart endothelial cells. Cardiovasc Res 71:764–773

    PubMed  Google Scholar 

  • Pham TM, Morris JB, Arthur JF et al (2003) UTP but not ATP causes hypertrophic growth in neonatal rat cardiomyocytes. J Mol Cell Cardiol 35:287–292

    PubMed  CAS  Google Scholar 

  • Zheng JS, Boluyt MO, O’Neill L et al (1994) Extracellular ATP induces immediate-early gene expression but not cellular hypertrophy in neonatal cardiac myocytes. Circ Res 74:1034–1041

    PubMed  CAS  Google Scholar 

  • Morris JB, Pham TM, Kenney B et al (2004) UTP transactivates epidermal growth factor receptors and promotes cardiomyocyte hypertrophy despite inhibiting transcription of the hypertrophic marker gene, atrial natriuretic peptide. J Biol Chem 279:8740–8746

    PubMed  CAS  Google Scholar 

  • Yitzhaki S, Shneyvays V, Jacobson KA et al (2005) Involvement of uracil nucleotides in protection of cardiomyocytes from hypoxic stress. Biochem Pharmacol 69:1215–1223

    PubMed  CAS  Google Scholar 

  • Yitzhaki S, Shainberg A, Cheporko Y et al (2006) Uridine-5’-triphosphate (UTP) reduces infarct size and improves rat heart function after myocardial infarct. Biochem Pharmacol 72:949–955

    PubMed  CAS  Google Scholar 

  • Saini HK, Shao Q, Musat S et al (2005) Imidapril treatment improves the attenuated inotropic and intracellular calcium responses to ATP in heart failure due to myocardial infarction. Br J Pharmacol 144:202–211

    PubMed  CAS  Google Scholar 

  • Banfi C, Ferrario S, De Vincenti O et al (2005) P2 receptors in human heart: upregulation of P2X6 in patients undergoing heart transplantation, interaction with TNFα and potential role in myocardial cell death. J Mol Cell Cardiol 39:929–939

    PubMed  CAS  Google Scholar 

  • Malmsjö M, Bergdahl A, Möller S et al (1999) Congestive heart failure induces downregulation of P2X1-receptors in resistance arteries. Cardiovasc Res 43:219–227

    PubMed  Google Scholar 

  • Yang A, Sonin D, Jones L et al (2004) A beneficial role of cardiac P2X4 receptors in heart failure: rescue of the calsequestrin overexpression model of cardiomyopathy. Am J Physiol Heart Circ Physiol 287:H1096–H1103

    PubMed  CAS  Google Scholar 

  • Horackova M, Huang MH, Armour JA (1994) Purinergic modulation of adult guinea pig cardiomyocytes in long term cultures and co-cultures with extracardiac or intrinsic cardiac neurones. Cardiovasc Res 28:673–679

    PubMed  CAS  Google Scholar 

  • Jiang L, Bardini M, Keogh A et al (2005) P2X1 receptors are closely associated with connexin 43 in human ventricular myocardium. Int J Cardiol 98:291–297

    PubMed  Google Scholar 

  • Gaarder A, Jonsen J, Laland S et al (1961) Adenosine diphosphate in red cells as a factor in the adhesiveness of human blood platelets. Nature 192:531–532

    PubMed  CAS  Google Scholar 

  • Daniel JL, Dangelmaier C, Jin J et al (1998) Molecular basis for ADP-induced platelet activation. I. Evidence for three distinct ADP receptors on human platelets. J Biol Chem 273:2024–2029

    PubMed  CAS  Google Scholar 

  • Jin J, Kunapuli SP (1998) Coactivation of two different G protein-coupled receptors is essential for ADP-induced platelet aggregation. Proc Natl Acad Sci USA 95:8070–8074

    PubMed  CAS  Google Scholar 

  • Jin J, Daniel JL, Kunapuli SP (1998) Molecular basis for ADP-induced platelet activation. II. The P2Y1 receptor mediates ADP-induced intracellular calcium mobilization and shape change in platelets. J Biol Chem 273:2030–2034

    PubMed  CAS  Google Scholar 

  • Kunapuli SP, Dorsam RT, Kim S et al (2003) Platelet purinergic receptors. Curr Opin Pharmacol 3:175–180

    PubMed  CAS  Google Scholar 

  • Gachet C, Hechler B (2005) The platelet P2 receptors in thrombosis. Semin Thromb Hemost 31:162–167

    PubMed  CAS  Google Scholar 

  • Foster CJ, Prosser DM, Agans JM et al (2001) Molecular identification and characterization of the platelet ADP receptor targeted by thienopyridine antithrombotic drugs. J Clin Invest 107:1591–1598

    Article  PubMed  CAS  Google Scholar 

  • Fabre JE, Nguyen M, Latour A et al (1999) Decreased platelet aggregation, increased bleeding time and resistance to thromboembolism in P2Y1-deficient mice. Nat Med 5:1199–1202

    PubMed  CAS  Google Scholar 

  • Leon C, Alex M, Klocke A et al (2004) Platelet ADP receptors contribute to the initiation of intravascular coagulation. Blood 103:594–600

    PubMed  CAS  Google Scholar 

  • Gachet C (2005) The platelet P2 receptors as molecular targets for old and new antiplatelet drugs. Pharmacol Ther 108:180–192

    PubMed  CAS  Google Scholar 

  • Leon C, Hechler B, Freund M et al (1999) Defective platelet aggregation and increased resistance to thrombosis in purinergic P2Y1 receptor-null mice. J Clin Invest 104:1731–1737

    PubMed  CAS  Google Scholar 

  • Mahaut-Smith MP, Tolhurst G, Evans RJ (2004) Emerging roles for P2X1 receptors in platelet activation. Platelets 15:131–144

    PubMed  CAS  Google Scholar 

  • Birk AV, Leno E, Robertson HD et al (2003) Interaction between ATP and catecholamines in stimulation of platelet aggregation. Am J Physiol Heart Circ Physiol 284:H619–H625

    PubMed  CAS  Google Scholar 

  • Sévigny J, Sundberg C, Braun N et al (2002) Differential catalytic properties and vascular topography of murine nucleoside triphosphate diphosphohydrolase 1 (NTPDase1) and NTPDase2 have implications for thromboregulation. Blood 99:2801–2809

    PubMed  Google Scholar 

  • Robson SC, Kaczmarek E, Siegel JB et al (1997) Loss of ATP diphosphohydrolase activity with endothelial cell activation. J Exp Med 185:153–163

    PubMed  CAS  Google Scholar 

  • Koyamada N, Miyatake T, Candinas D et al (1996) Apyrase administration prolongs discordant xenograft survival. Transplantation 62:1739–1743

    PubMed  CAS  Google Scholar 

  • Imai M, Takigami K, Guckelberger O et al (2000) Recombinant adenoviral mediated CD39 gene transfer prolongs cardiac xenograft survival. Transplantation 70:864–870

    PubMed  CAS  Google Scholar 

  • Mizumoto N, Kumamoto T, Robson SC et al (2002) CD39 is the dominant Langerhans cell-associated ecto-NTPDase: modulatory roles in inflammation and immune responsiveness. Nat Med 8:358–365

    PubMed  CAS  Google Scholar 

  • Pearson JD (1993) The control of production and release of haemostatic factors in the endothelial cell. Baillieres Clin Haematol 6:629–651

    PubMed  CAS  Google Scholar 

  • Bouchie JL, Chen HC, Carney R et al (2000) P2Y receptor regulation of PAI-1 expression in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 20:866–873

    PubMed  CAS  Google Scholar 

  • CAPRIE Steering Committee (1996) A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events. Lancet 348:1329–1339

    Google Scholar 

  • Mehta SR, Yusuf S, Peters RJ et al (2001) Effects of pretreatment with clopidogrel and aspirin followed by long-term therapy in patients undergoing percutaneous coronary intervention: the PCI-CURE study. Lancet 358:527–533

    PubMed  CAS  Google Scholar 

  • Payne DA, Jones CI, Hayes PD et al (2004) Beneficial effects of clopidogrel combined with aspirin in reducing cerebral emboli in patients undergoing carotid endarterectomy. Circulation 109:1476–1481

    PubMed  CAS  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4