Suharyati S, Pratiwi NI, Pambudi SH, et al (2023) Indonesia Energy Outlook 2023. Bureau Of Energy Policy And Assembly Facilitation, Jakarta
Saravanan A, Yaashikaa PR, Kumar PS et al (2023) A comprehensive review on techno-economic analysis of biomass valorization and conversional technologies of lignocellulosic residues. Ind Crops Prod 200:116822. https://doi.org/10.1016/j.indcrop.2023.116822
Osman AI, Mehta N, Elgarahy AM et al (2021) Conversion of biomass to biofuels and life cycle assessment: a review. Environ Chem Lett 19:4075–4118. https://doi.org/10.1007/s10311-021-01273-0
Xu N, Liu S, Xin F et al (2019) Biomethane production from lignocellulose: biomass recalcitrance and its impacts on anaerobic digestion. Front Bioeng Biotechnol 7:1–12. https://doi.org/10.3389/fbioe.2019.00191
Wu Y, Ye X, Wang Y, Wang L (2023) Methane production from biomass by thermochemical conversion: a review. Catalysts. https://doi.org/10.3390/catal13040771
Stanley J, Thanarasu A, Senthil Kumar P et al (2022) Potential pre-treatment of lignocellulosic biomass for the enhancement of biomethane production through anaerobic digestion—a review. Fuel 318:123593. https://doi.org/10.1016/j.fuel.2022.123593
Jagtap NJ, Dalvi VH (2021) Feasibility study of bio-methane economy in India. Biomass Bioenerg 149:106059. https://doi.org/10.1016/j.biombioe.2021.106059
Hippargi G, Anjankar S, Krupadam RJ, Rayalu SS (2021) Simultaneous wastewater treatment and generation of blended fuel methane and hydrogen using Au-Pt/TiO2 photo-reforming catalytic material. Fuel 291:120113. https://doi.org/10.1016/j.fuel.2020.120113
Xie S, Lin S, Zhang Q et al (2018) Selective electrocatalytic conversion of methane to fuels and chemicals. J Energy Chem 27:1629–1636. https://doi.org/10.1016/j.jechem.2018.03.015
Glushkov D, Nyashina G, Shvets A et al (2021) Current status of the pyrolysis and gasification mechanism of biomass. Energies. https://doi.org/10.3390/en14227541
Wang A, Austin D, Song H (2019) Investigations of thermochemical upgrading of biomass and its model compounds: opportunities for methane utilization. Fuel 246:443–453. https://doi.org/10.1016/j.fuel.2019.03.015
Milledge JJ, Nielsen BV, Maneein S, Harvey PJ (2019) A brief review of anaerobic digestion of algae for BioEnergy. Energies. https://doi.org/10.3390/en12061166
Buragohain S, Mahanta P, Mohanty K (2021) Biogas production from anaerobic mono- and co-digestion of lignocellulosic feedstock: process optimization and its implementation at community level. Environ Technol Innov 24:101981. https://doi.org/10.1016/j.eti.2021.101981
Sciuto L, Licciardello F, Barbera AC, Cirelli G (2023) Giant reed from wetlands as a potential resource for biomethane production. Ecol Eng 190:106947. https://doi.org/10.1016/j.ecoleng.2023.106947
Meenakshisundaram S, Fayeulle A, Léonard E et al (2022) Combined biological and chemical/physicochemical pretreatment methods of lignocellulosic biomass for bioethanol and biomethane energy production—a review. Appl Microbiol 2:716–734. https://doi.org/10.3390/applmicrobiol2040055
Yang L, Li X, Yuan H et al (2023) Enhancement of biomethane production and decomposition of physicochemical structure of corn straw by combined freezing-thawing and potassium hydroxide pretreatment. Energy 268:126633. https://doi.org/10.1016/j.energy.2023.126633
Srivastava N, Singh R, Srivastava M et al (2023) Impact of nanomaterials on sustainable pretreatment of lignocellulosic biomass for biofuels production: an advanced approach. Bioresour Technol 369:128471. https://doi.org/10.1016/j.biortech.2022.128471
Rashid J, Tufail Bhatti T, Hassan M et al (2023) Enhancement in anaerobic biogas conversion by visible light photocatalytic pre-treatment of rice husk with indium vanadate decorated titanium dioxide nanocomposite. Fuel 346:128289. https://doi.org/10.1016/j.fuel.2023.128289
Awais M, Mustafa MS, Rasheed MA et al (2020) Metal oxides and ultraviolet light-based photocatalytic pretreatment of biomass for biogas production and lignin oxidation. BioResources 15:1747–1762. https://doi.org/10.15376/biores.15.1.1747-1762
Tedesco S, Hurst G, Imtiaz A et al (2020) TiO2 supported natural zeolites as biogas enhancers through photocatalytic pre-treatment of Miscanthus × giganteous crops. Energy 205:117954. https://doi.org/10.1016/j.energy.2020.117954
Mahdavi M, Mirmohammadi M, Baghdadi M, Mahpishanian S (2022) Visible light photocatalytic degradation and pretreatment of lignin using magnetic graphitic carbon nitride for enhancing methane production in anaerobic digestion. Fuel 318:123600. https://doi.org/10.1016/j.fuel.2022.123600
Alvarado-Morales M, Tsapekos P, Awais M et al (2017) TiO2/UV based photocatalytic pretreatment of wheat straw for biogas production. Anaerobe 46:155–161. https://doi.org/10.1016/j.anaerobe.2016.11.002
Lee GJ, Hou YH, Liu N, Wu JJ (2020) Enhanced photocatalytic hydrogen and methane evolution using chalcogenide with metal ion modification via a microwave-assisted solvothermal method. Catal Today 355:493–501. https://doi.org/10.1016/j.cattod.2019.06.068
Hamid S, Dillert R, Bahnemann DW (2018) Photocatalytic reforming of aqueous acetic acid into molecular hydrogen and hydrocarbons over co-catalyst-loaded TiO2: shifting the product distribution. J Phys Chem C 122:12792–12809. https://doi.org/10.1021/acs.jpcc.8b02691
Iervolino G, Vaiano V, Murcia JJ et al (2021) Photocatalytic production of hydrogen and methane from glycerol reforming over Pt/TiO2Nb2O5. Int J Hydrogen Energy 46:38678–38691. https://doi.org/10.1016/j.ijhydene.2021.09.111
Tanaka Y, Hasanuzzaman M (2022) Energy, economic and environmental assessment of photocatalytic methane production : a comparative case study between Japan and Malaysia. Glob Energy Interconnect 5:192–205. https://doi.org/10.1016/j.gloei.2022.04.016
Slamet R (2012) Potensi Titania nanotube array Dan Aplikasinya prospect of titania nanotube array and its application on hydrogen production and waste treatment. J Kim Kemasan 34:249–262
Kustiningsih I, Slamet PWW (2014) Synthesis of titania nanotubes and titania nanowires by combination sonication-hydrothermal treatment and their photocatalytic activity for hydrogen production. Int J Technol 5:133–141. https://doi.org/10.14716/ijtech.v5i2.400
Kumar DP, Reddy NL, Srinivas B, Kumari VD (2017) Influence of reaction parameters for the enhanced photocatalytic hydrogen production using surface modified semiconductor titania nanotubes. Mater Today Proc 4:11653–11659. https://doi.org/10.1016/j.matpr.2017.09.079
Scandura G, Rodríguez J, Palmisano G (2019) Hydrogen and propane production from butyric acid photoreforming over Pt-TiO2. Front Chem. https://doi.org/10.3389/fchem.2019.00563
Kartini I, Nur I, Amalia FR et al (2019) Short time synthesis of titania nanotubes: effect of pre-mixing prior hydrothermal. Indones J Chem 19:58–67. https://doi.org/10.22146/ijc.26777
Chen H, Chen D, Bai L, Shu K (2018) Hydrothermal synthesis and electrochemical properties of TiO2 nanotubes as an anode material for lithium ion batteries. Int J Electrochem Sci 13:2118–2125. https://doi.org/10.20964/2018.02.75
Gusmão SBS, Ghosh A, Marques TMF et al (2019) One-pot synthesis of titanate nanotubes decorated with anatase nanoparticles using a microwave-assisted hydrothermal reaction. J Nanomater. https://doi.org/10.1155/2019/4825432
Muniyappan S, Solaiyammal T, Sudhakar K et al (2017) Conventional hydrothermal synthesis of titanate nanotubes: Systematic discussions on structural, optical, thermal and morphological properties. Mod Electron Mater 3:174–178. https://doi.org/10.1016/j.moem.2017.10.002
Talla A, Suliali NJ, Goosen WE et al (2022) Effect of annealing temperature and atmosphere on the structural, morphological and luminescent properties of TiO2 nanotubes. Phys B Condens Matter 640:414026. https://doi.org/10.1016/j.physb.2022.414026
Raizada P, Sudhaik A, Patial S et al (2020) Engineering nanostructures of CuO-based photocatalysts for water treatment: current progress and future challenges. Arab J Chem 13:8424–8457. https://doi.org/10.1016/j.arabjc.2020.06.031
Yamakata A, Vequizo JJM (2019) Curious behaviors of photogenerated electrons and holes at the defects on anatase, rutile, and brookite TiO2 powders: a review. J Photochem Photobiol C Photochem Rev 40:234–243. https://doi.org/10.1016/j.jphotochemrev.2018.12.001
Davari N, Falletta E, Bianchi CL et al (2024) TiO2 nanotubes immobilized on polyurethane foam as a floating photocatalyst for water treatment. Catal Today 436:114725. https://doi.org/10.1016/j.cattod.2024.114725
Althabaiti SA, Khan Z, Malik MA et al (2023) Biomass-derived carbon deposited TiO2 nanotube photocatalysts for enhanced hydrogen production. Nanoscale Adv 5:3671–3683. https://doi.org/10.1039/d3na00211j
Lu X, Yue Z, Peng B (2022) Preparation of TiO2 nanotube-based photocatalysts and degradation kinetics of patulin in simulated juice. J Food Eng 323:110992. https://doi.org/10.1016/j.jfoodeng.2022.110992
Hao H, Zhang L, Wang W, Zeng S (2018) Facile modification of titania with nickel sulfide and sulfate species for the photoreformation of cellulose into hydrogen. Chemsuschem 11:2810–2817. https://doi.org/10.1002/cssc.201800743
Zou J, Zhang G, Xu X (2018) One-pot photoreforming of cellulosic biomass waste to hydrogen by merging photocatalysis with acid hydrolysis. Appl Catal A Gen 563:73–79. https://doi.org/10.1016/j.apcata.2018.06.030
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4