Springer+
from €39.99 /Month
Price includes VAT (Germany)
Instant access to the full article PDF.
ReferencesAbramowitz, M., Stegun, L.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1992) (reprint of the 1972 edition)
Agarwal, R.P., O’Regan, D.: Ordinary and Partial Differential Equations (With Special Functions, Fourier Series, and Boundary Value Problems). Universitext Springer, New York (2009)
Andrews, G.E., Askey, R., Roy, R.: Special Functions. Encyclopedia Math. Appl., vol. 71. Cambridge University Press, Cambridge (1999)
Bailey, W.N.: Products of generalized hypergeometric series. Proc. Lond. Math. Soc. 28(2), 242–254 (1928)
Bailey, W.N.: Generalized Hypergeometric Series. Hafner, New York (1972)
Buschman, R.G., Srivastava, H.M.: Series identities and reducibility of Kampé de Fériet functions. Math. Proc. Camb. Philos. Soc. 91(3), 435–440 (1982)
Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Tables of Integral Transforms. McGraw-Hill, New York (1954). Vols. I, II
Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions. Krieger, Melbourne (1981). Vols. I, II
Gradsteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 6th edn. Academic Press, San Diego (2000)
Grinshpan, A.Z.: General inequalities, consequences and applications. Adv. Appl. Math. 34, 71–100 (2005)
Grinshpan, A.Z.: Integral inequalities for some special functions. J. Math. Anal. Appl. 314, 724–735 (2006)
Grinshpan, A.Z.: Weighted norm inequalities for analytic functions. J. Math. Anal. Appl. 327, 1095–1104 (2007)
Grinshpan, A.Z.: Inequalities for formal power series and entire functions. J. Math. Anal. Appl. 338, 1418–1430 (2008)
Grinshpan, A.Z.: Weighted inequalities and negative binomials. Adv. Appl. Math. 45, 564–606 (2010)
Grinshpan, A.Z.: Volterra convolution equations: solution-kernel connection. Integral Transforms Spec. Funct. 23, 263–275 (2012)
Grinshpan, A.Z.: Weighted norm inequalities for convolutions, differential operators, and generalized hypergeometric functions. Integral Equ. Oper. Theory 75, 165–185 (2013)
Hardy, G.H.: A chapter from Ramanujan’s note-book. Proc. Camb. Philos. Soc. 21, 492–503 (1923)
Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1952)
Orr, W.McF.: Theorems relating to the product of two hypergeometric series. In: Trans. Camb. Phil. Soc. vol. 17, pp. 1–15 (1899)
Petkovšek, M., Wilf, H.S., Zeilberger, D.: A=B. AK Peters, Wellesley (1996) (with foreword by D.E. Knuth)
Preece, C.T.: The product of two generalized hypergeometric functions. Proc. Lond. Math. Soc. 22(2), 370–380 (1924)
Prudnikov, A.P., Brychkov, Yu.A., Marichev, O.I.: Integrals and Series. Gordon & Breach, Amsterdam (1990) (translated from the Russian by G.G. Gould). Vols. I, II, III
Slater, L.J.: Generalized Hypergeometric Functions. Cambridge University Press, Cambridge (1966)
Srivastava, H.M., Buschman, R.G.: Theory and Applications of Convolution Integral Equations. Mathematics and Applications, vol. 79. Kluwer Academic, Dordrecht (1992)
Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1966) (reprint of the 1944 edition)
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4