A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://doi.org/10.1007/s10311-020-01012-x below:

Root exudates ameliorate cadmium tolerance in plants: A review

  • Abbas T, Rizwan M, Ali S, Adrees M, Zia-ur-Rehman M, Qayyum MF, Ok YS, Murtaza G (2018) Effect of biochar on alleviation of cadmium toxicity in wheat (Triticum aestivum L.) grown on Cd-contaminated saline soil. Environ Sci Pollut Res 25:25668–25680. https://doi.org/10.1007/s11356-017-8987-4

    Article  CAS  Google Scholar 

  • Abdu N, Abdullahi AA, Abdulkadir A (2017) Heavy metals and soil microbes. Environ Chem Lett 15:65–84. https://doi.org/10.1007/s10311-016-0587-x

    Article  CAS  Google Scholar 

  • Adeleke R, Nwangburuka C, Oboirien B (2017) Origins, roles and fate of organic acids in soils: a review. S Afr J Bot 108:393–406. https://doi.org/10.1016/j.sajb.2016.09.002

    Article  CAS  Google Scholar 

  • Adeniji BA, Budimir-Hussey MT, Macfie SM (2010) Production of organic acids and adsorption of Cd on roots of durum wheat (Triticum turgidum L. var. durum). Acta Physiol Plant 32:1063–1072. https://doi.org/10.1007/s11738-010-0498-6

    Article  CAS  Google Scholar 

  • Agency for Toxic Substances and Disease Registry (2017) CERCLA priority list of hazardous substances. http://www.atsdr.cdc.gov/spl/index.html

  • Ahmad A, Hadi F, Ali N (2015) Effective phytoextraction of cadmium (Cd) with increasing concentration of total phenolics and free proline in Cannabis sativa (L.) plant under various treatments of fertilizers, plant growth regulators and sodium salt. Int J Phytoremediation 17:56–65. https://doi.org/10.1080/15226514.2013.828018

    Article  CAS  Google Scholar 

  • Ahsan MT, Tahseen R, Ashraf A, Mahmood A, Arslan M, Afzal M (2019) Effective plant-endophyte interplay can improve the cadmium hyperaccumulation in Brachiaria mutica. World J Microbiol Biotechnol 35:188. https://doi.org/10.1007/s11274-019-2757-z

    Article  CAS  Google Scholar 

  • Ali N, Hadi F (2015) Phytoremediation of cadmium improved with the high production of endogenous phenolics and free proline contents in Parthenium hysterophorus plant treated exogenously with plant growth regulator and chelating agent. Environ Sci Pollut Res 22:13305–13318. https://doi.org/10.1007/s11356-015-4595-3

    Article  CAS  Google Scholar 

  • Asgher M, Khan MIR, Anjum NA, Khan NA (2015) Minimising toxicity of cadmium in plants—role of plant growth regulators. Protoplasma 252:399–413. https://doi.org/10.1007/s00709-014-0710-4

    Article  CAS  Google Scholar 

  • Astolfi S, Ortolani MR, Catarcione G, Paolacci AR, Cesco S, Pinton R, Ciaffi M (2014) Cadmium exposure affects iron acquisition in barley (Hordeum vulgare) seedlings. Physiol Plant 152:646–659. https://doi.org/10.1111/ppl.12207

    Article  CAS  Google Scholar 

  • Awad F, Römheld V (2000) Mobilization of heavy metals from contaminated calcareous soils by plant born, microbial and synthetic chelates and their uptake by wheat plants. J Plant Nutr 23:1847–1855. https://doi.org/10.1080/01904160009382147

    Article  CAS  Google Scholar 

  • Awasthi MK, Wang Q, Chen H, Liu T, Awasthi SK, Duan Y, Varjani S, Pandey A, Zhang Z (2019) Role of compost biochar amendment on the (im) mobilization of cadmium and zinc for Chinese cabbage (Brassica rapa L.) from contaminated soil. J Soil Sediment 19:3883–3897. https://doi.org/10.1007/s11368-019-02277-8

    Article  CAS  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant, Cell Environ 32:666–681. https://doi.org/10.1111/j.1365-3040.2009.01926.x

    Article  CAS  Google Scholar 

  • Badri DV, Loyola-Vargas VM, Broeckling CD, De-la-Peña C, Jasinski M, Santelia D, Martinoia W, Summer LW, Banta LM, Stermitz F, Vivanco JM (2008) Altered profile of secondary metabolites in the root exudates of Arabidopsis ATP-binding cassette transporter mutants. Plant Physiol 146:762–771. https://doi.org/10.1104/pp.107.109587

    Article  CAS  Google Scholar 

  • Baetz U, Martinoia E (2014) Root exudates: the hidden part of plant defense. Trends Plant Sci 19:90–98. https://doi.org/10.1016/j.tplants.2013.11.006

    Article  CAS  Google Scholar 

  • Baghaie AH, Aghili F, Jafarinia R (2019) Soil-indigenous arbuscular mycorrhizal fungi and zeolite addition to soil synergistically increase grain yield and reduce cadmium uptake of bread wheat (through improved nitrogen and phosphorus nutrition and immobilization of Cd in roots). Environ Sci Pollut Res 26:30794–30807. https://doi.org/10.1007/s11356-019-06237-0

    Article  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266. https://doi.org/10.1146/annurev.arplant.57.032905.105159

    Article  CAS  Google Scholar 

  • Banakar R, Alvarez Fernandez A, Díaz-Benito P, Abadia J, Capell T, Christou P (2017) Phytosiderophores determine thresholds for iron and zinc accumulation in biofortified rice endosperm while inhibiting the accumulation of cadmium. J Exp Bot 68:4983–4995. https://doi.org/10.1093/jxb/erx304

    Article  CAS  Google Scholar 

  • Bansal P, Sharma P, Goyal V (2002) Impact of lead and cadmium on enzyme of citric acid cycle in germinating pea seeds. Biol Plant 45:125–127. https://doi.org/10.1023/A:1015173112842

    Article  CAS  Google Scholar 

  • Bao T, Sun T, Sun L (2011) Low molecular weight organic acids in root exudates and cadmium accumulation in cadmium hyperaccumulator Solanum nigrum L. and nonhyperaccumulator Solanum lycopersicum L. Afr J Biotechnol 10:17180–17185. https://doi.org/10.5897/AJB11.1617

    Article  CAS  Google Scholar 

  • Bauddh K, Singh RP (2015) Effects of organic and inorganic amendments on bio-accumulation and partitioning of Cd in Brassica juncea and Ricinus communis. Ecol Eng 74:93–100. https://doi.org/10.1016/j.ecoleng.2014.10.022

    Article  Google Scholar 

  • Belimov AA, Zinovkina NY, Safronova VI, Litvinsky VA, Nosikov VV, Zavalin AA, Tikhonovich IA (2019) Rhizobial ACC deaminase contributes to efficient symbiosis with pea (Pisum sativum L.) under single and combined cadmium and water deficit stress. Environ Exp Bot 167:103859. https://doi.org/10.1016/j.envexpbot.2019.103859

    Article  CAS  Google Scholar 

  • Berbar Y, Hammache ZE, Bensaadi S, Soukeur R, Amara M, Van der Bruggen B (2019) Effect of functionalized silica nanoparticles on sulfonated polyethersulfone ion exchange membrane for removal of lead and cadmium ions from aqueous solutions. J Water Process Eng 32:100953. https://doi.org/10.1016/j.jwpe.2019.100953

    Article  Google Scholar 

  • Bhattacharya A, Sood P, Citovsky V (2010) The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. Mol Plant Pathol 11:705–719. https://doi.org/10.1111/j.1364-3703.2010.00625.x

    Article  CAS  Google Scholar 

  • Boominathan R, Doran PM (2003) Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescens. Biotechnol Bioeng 83:158–167. https://doi.org/10.1002/bit.10656

    Article  CAS  Google Scholar 

  • Chaffai R, Tekitek A, El Ferjani E (2006) A comparative study on the organic acid content and exudation in maize (Zea mays L.) seedlings under conditions of copper and cadmium stress. Asian J Plant Sci 5:598–606. https://doi.org/10.3923/ajps.2006.598.606

    Article  CAS  Google Scholar 

  • Chen YX, Lin Q, Luo YM, He YF, Zhen SJ, Yu YL, Tian GM, Wong MH (2003) The role of citric acid on the phytoremediation of heavy metal contaminated soil. Chemosphere 50:807–811. https://doi.org/10.1016/S0045-6535(02)00223-0

    Article  CAS  Google Scholar 

  • Chen B, Zhang Y, Rafiq MT, Khan KY, Pan F, Yang X, Feng Y (2014) Improvement of cadmium uptake and accumulation in Sedum alfredii by endophytic bacteria Sphingomonas SaMR12: effects on plant growth and root exudates. Chemosphere 117:367–373. https://doi.org/10.1016/j.chemosphere.2014.07.078

    Article  CAS  Google Scholar 

  • Chen H, Teng Y, Lu S, Wang Y, Wang J (2015) Contamination features and health risk of soil heavy metals in China. Sci Total Environ 512:143–153. https://doi.org/10.1016/j.scitotenv.2015.01.025

    Article  CAS  Google Scholar 

  • Chen J, Shafi M, Wang Y, Wu J, Ye Z, Liu C, Zhong B, Guo H, He L, Liu D (2016) Organic acid compounds in root exudation of Moso Bamboo (Phyllostachys pubescens) and its bioactivity as affected by heavy metals. Environ Sci Pollut Res 23:20977–20984. https://doi.org/10.1007/s11356-016-7323-8

    Article  CAS  Google Scholar 

  • Chen YT, Wang Y, Yeh KC (2017) Role of root exudates in metal acquisition and tolerance. Curr Opin Plant Biol 39:66–72. https://doi.org/10.1016/j.pbi.2017.06.004

    Article  CAS  Google Scholar 

  • Chen H, Lei J, Tong H, Gu M, Fang Y, Wang X, Tang C, Li Z, Liu C (2019) Effects of Mn(II) on the oxidation of fe in soils and the uptake of cadmium by rice (Oryza sativa). Water Air Soil Pollut 230:190. https://doi.org/10.1007/s11270-019-4237-3

    Article  CAS  Google Scholar 

  • Chen L, Li F, Wei Y, Li G, Shen K, He HJ (2019) High cadmium adsorption on nanoscale zero-valent iron coated Eichhornia crassipes biochar. Environ Chem Lett 17:589–594. https://doi.org/10.1007/s10311-018-0811-y

    Article  CAS  Google Scholar 

  • Cheng Z, Ren J, Li Y, Chang W, Chen Z (2002) Study on the multiple mechanisms underlying the reaction between hydroxyl radical and phenolic compounds by qualitative structure and activity relationship. Bioorg Med Chem 10:4067–4073. https://doi.org/10.1016/S0968-0896(02)00267-5

    Article  CAS  Google Scholar 

  • Chiang PN, Wang MK, Chiu CY, Chou SY (2006) Effects of cadmium amendments on low-molecular-weight organic acid exudates in rhizosphere soils of tobacco and sunflower. Environ Toxicol 21:479–488. https://doi.org/10.1002/tox.20210

    Article  CAS  Google Scholar 

  • Chiang PN, Chiu CY, Wang MK, Chen BT (2011) Low-molecular-weight organic acids exuded by Millet (Setaria italica (L.) Beauv.) roots and their effect on the remediation of cadmium-contaminated soil. Soil Sci 176:33–38. https://doi.org/10.1097/SS.0b013e318202fdc9

    Article  CAS  Google Scholar 

  • Chuaphasuk C, Prapagdee B (2019) Effects of biochar-immobilized bacteria on phytoremediation of cadmium-polluted soil. Environ Sci Pollut Res 26:23679–23688. https://doi.org/10.1007/s11356-019-05661-6

    Article  CAS  Google Scholar 

  • Costa G, Morel JL (1994) Water relations, gas exchange and amino acid content in Cd-treated lettuce. Plant Physiol Biochem 32:561–570

    CAS  Google Scholar 

  • Costa G, Michaut JC, Guckert A (1997) Amino acids exuded from axenic roots of lettuce and white lupin seedlings exposed to different cadmium concentrations. J Plant Nutr 20:883–900. https://doi.org/10.1080/01904169709365303

    Article  CAS  Google Scholar 

  • Costa ET, Guilherme LRG, de Melo ÉEC, Ribeiro BT, Euzelina dos Santos BI, da Costa Severiano EC, Faquin V, Hale BA (2012) Assessing the tolerance of castor bean to Cd and Pb for phytoremediation purposes. Biol Trace Elem Res 145:93–100. https://doi.org/10.1007/s12011-011-9164-0

    Article  CAS  Google Scholar 

  • Deng Y, Liu XD, Liu HW, Jiang HD, Xu LF, Xiao YH, Yin HQ, Liang YL (2017) Bioleaching of cadmium from contaminated paddy fields by consortium of autotrophic and indigenous cadmium-tolerant bacteria. Solid State Phenom 262:617–621. https://doi.org/10.4028/www.scientific.net/SSP.262.617

    Article  Google Scholar 

  • Dharupaneedi SP, Nataraj SK, Nadagouda M, Reddy KR, Shukla SS, Aminabhavi TM (2019) Membrane-based separation of potential emerging pollutants. Sep Purif Technol 210:850–866. https://doi.org/10.1016/j.seppur.2018.09.003

    Article  CAS  Google Scholar 

  • Dimkpa CO, Merten D, Svatoš A, Büchel G, Kothe E (2009) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol 107:1687–1696. https://doi.org/10.1111/j.1365-2672.2009.04355.x

    Article  CAS  Google Scholar 

  • Dresler S, Hanaka A, Bednarek W, Maksymiec W (2014) Accumulation of low-molecular-weight organic acids in roots and leaf segments of Zea mays plants treated with cadmium and copper. Acta Physiol Plant 36:1565–1575. https://doi.org/10.1007/s11738-014-1532-x

    Article  CAS  Google Scholar 

  • Dreyer I, Gomez-Porras JL, Riaño-Pachón DM, Hedrich R, Geiger D (2012) Molecular evolution of slow and quick anion channels (SLACs and QUACs/ALMTs). Front Plant Sci 3:263. https://doi.org/10.3389/fpls.2012.00263

    Article  Google Scholar 

  • Dubey S, Shri M, Gupta A, Rani V, Chakrabarty D (2018) Toxicity and detoxification of heavy metals during plant growth and metabolism. Environ Chem Lett 16:1169–1192. https://doi.org/10.1007/s10311-018-0741-8

    Article  CAS  Google Scholar 

  • Elguera JCT, Barrientos EY, Wrobel K, Wrobel K (2013) Effect of cadmium (Cd(II)), selenium (Se(IV)) and their mixtures on phenolic compounds and antioxidant capacity in Lepidium sativum. Acta Physiol Plant 35:431–441. https://doi.org/10.1007/s11738-012-1086-8

    Article  CAS  Google Scholar 

  • Fernándezf R, Fernández-Fuego D, Bertrand A, González A (2014) Strategies for Cd accumulation in Dittrichia viscosa (L.) Greuter: role of the cell wall, non-protein thiols and organic acids. Plant Physiol Biochem 78:63–70. https://doi.org/10.1016/j.plaphy.2014.02.021

    Article  CAS  Google Scholar 

  • Fu H, Yu H, Li T, Zhang X (2018) Influence of cadmium stress on root exudates of high cadmium accumulating rice line (Oryza sativa L.). Ecotoxicol Environ Saf 150:168–175. https://doi.org/10.1016/j.ecoenv.2017.12.014

    Article  CAS  Google Scholar 

  • Fu H, Yu H, Li T, Wu Y (2019) Effect of cadmium stress on inorganic and organic components in xylem sap of high cadmium accumulating rice line (Oryza sativa L.). Ecotoxicol Environ Saf 168:330–337. https://doi.org/10.1016/j.ecoenv.2018.10.023

    Article  CAS  Google Scholar 

  • Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46. https://doi.org/10.1016/j.envexpbot.2012.04.006

    Article  CAS  Google Scholar 

  • Gong X, Huang D, Liu Y, Zeng G, Chen S, Wang R, Xue W (2019) Biochar facilitated the phytoremediation of cadmium contaminated sediments: metal behavior, plant toxicity, and microbial activity. Sci Total Environ 666:1126–1133. https://doi.org/10.1016/j.scitotenv.2019.02.215

    Article  CAS  Google Scholar 

  • Gothberg A, Greger M, Holm K, Bengtsson BE (2004) Influence of nutrient levels on uptake and effects of mercury, cadmium, and lead in water spinach. J Environ Qual 33:1247–1255. https://doi.org/10.2134/jeq2004.1247

    Article  Google Scholar 

  • Guo J, Chi J (2014) Effect of Cd-tolerant plant growth-promoting rhizobium on plant growth and Cd uptake by Lolium multiflorum Lam. and Glycine max (L.) Merr. in Cd-contaminated soil. Plant Soil 375:205–214. https://doi.org/10.1007/s11104-013-1952-1

    Article  CAS  Google Scholar 

  • Guo B, Liu C, Ding N, Fu Q, Lin Y, Li H, Li N (2016) Silicon alleviates cadmium toxicity in two cypress varieties by strengthening the exodermis tissues and stimulating phenolic exudation of roots. J Plant Growth Regul 35:420–429. https://doi.org/10.1007/s00344-015-9549-y

    Article  CAS  Google Scholar 

  • Guohua NI, Peng ZH, Yiman JI, Yuedong M (2012) Vitrification of MSWI fly ash by thermal plasma melting and fate of heavy metals. Plasma Sci Technol 14:813. https://doi.org/10.1088/1009-0630/14/9/08

    Article  CAS  Google Scholar 

  • Gusiatin ZM, Klimiuk E (2012) Metal (Cu, Cd and Zn) removal and stabilization during multiple soil washing by saponin. Chemosphere 86:383–391. https://doi.org/10.1016/j.chemosphere.2011.10.027

    Article  CAS  Google Scholar 

  • Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Kramer U (2008) Evolution of metal hyperaccumulation required cis regulatory changes and triplication of HMA4. Nature 453:391–395. https://doi.org/10.1038/nature06877

    Article  CAS  Google Scholar 

  • Hashem A, Abd-Allah EF, Alqarawi AA, Malik JA, Wirth S, Egamberdieva D (2019) Role of calcium in AMF-mediated alleviation of the adverse impacts of cadmium stress in Bassia indica [Wight] AJ Scott. Saudi J Biol Sci 26:828–838. https://doi.org/10.1016/j.sjbs.2016.11.003

    Article  CAS  Google Scholar 

  • Hazama K, Nagata S, Fujimori T, Yanagisawa S, Yoneyama T (2015) Concentrations of metals and potential metal-binding compounds and speciation of Cd, Zn and Cu in phloem and xylem saps from castor bean plants (Ricinus communis) treated with four levels of cadmium. Physiol Plant 154:243–255. https://doi.org/10.1111/ppl.12309

    Article  CAS  Google Scholar 

  • He JL, Qin JJ, Long LY, Ma YL, Li H, Li K, Jiang XN, Liu TX, Polle A, Liang ZS (2011) Net cadmium flux and accumulation reveal tissue-specific oxidative stress and detoxification in Populus canescens. Physiol Plant 143:50–63. https://doi.org/10.1111/j.1399-3054.2011.01487.x

    Article  CAS  Google Scholar 

  • He S, He Z, Yang X, Stoffella PJ, Baligar VC (2015) Soil biogeochemistry, plant physiology, and phytoremediation of cadmium-contaminated soils. Adv Agron 134:135–225

    Article  Google Scholar 

  • Hinsinger P, Gobran GR, Gregory PJ, Wenzel WW (2005) Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. New Phytol 168:293–303. https://doi.org/10.1111/j.1469-8137.2005.01512.x

    Article  CAS  Google Scholar 

  • Hong K, Tokunaga S, Kajiuchi T (2002) Evaluation of remediation process with plant derived biosurfactant for recovery of heavy metals from contaminated soils. Chemosphere 49:379–387. https://doi.org/10.1016/S0045-6535(02)00321-1

    Article  CAS  Google Scholar 

  • Huang YC, Chen H, Zhao WJ, Li W, Yang NH, Sun Y, Wang L, Cao SH (2016) Silicon-mediated alleviation of Cadmium toxicity on Thujopsis dolabrata. Phyton Int J Exp Bot 85:283–290

    Google Scholar 

  • Huang X, Wang L, Zhu S, Ho SH, Wu J, Kalita PK, Ma F (2018) Unraveling the effects of arbuscular mycorrhizal fungus on uptake, translocation, and distribution of cadmium in Phragmites australis (Cav.) Trin. ex Steud. Ecotoxicol Environ Saf 149:43–50. https://doi.org/10.1016/j.ecoenv.2017.11.011

    Article  CAS  Google Scholar 

  • Irtelli B, Navari-Izzo F (2006) Influence of sodium nitrilotriacetate (NTA) and citric acid on phenolic and organic acids in Brassica juncea grown in excess of cadmium. Chemosphere 65:1348–1354. https://doi.org/10.1016/j.chemosphere.2006.04.014

    Article  CAS  Google Scholar 

  • Itusha A, Osborne WJ, Vaithilingam M (2019) Enhanced uptake of Cd by biofilm forming Cd resistant plant growth promoting bacteria bioaugmented to the rhizosphere of Vetiveria zizanioides. Int J Phytoremediation 21:487–495. https://doi.org/10.1080/15226514.2018.1537245

    Article  CAS  Google Scholar 

  • Jan R, Khan MA, Asaf S, Lee IJ, Kim KM (2019) Metal resistant endophytic bacteria reduces cadmium, nickel toxicity, and enhances expression of metal stress related genes with improved growth of Oryza sativa, via regulating its antioxidant machinery and endogenous hormones. Plants 8:363. https://doi.org/10.3390/plants8100363

    Article  CAS  Google Scholar 

  • Javed MT, Akram MS, Tanwir K, Chaudhary HJ, Ali Q, Stoltz E, Lindberg S (2017) Cadmium spiked soil modulates root organic acids exudation and ionic contents of two differentially Cd tolerant maize (Zea mays L.) cultivars. Ecotoxicol Environ Saf 141:216–225. https://doi.org/10.1016/j.ecoenv.2017.03.027

    Article  CAS  Google Scholar 

  • Johansson EM, Fransson PM, Finlay RD, van Hees PA (2008) Quantitative analysis of root and ectomycorrhizal exudates as a response to Pb, Cd and As stress. Plant Soil 313:39–54. https://doi.org/10.1007/s11104-008-9678-1

    Article  CAS  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere—a critical review. Plant Soil 205:25–44. https://doi.org/10.1023/A:1004356007312

    Article  CAS  Google Scholar 

  • Jozefczak M, Remans T, Vangronsveld J, Cuypers A (2012) Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci 13:3145–3175. https://doi.org/10.3390/ijms13033145

    Article  CAS  Google Scholar 

  • Kabata-Pendias A (1993) Behavioural properties of trace metals in soils. Appl Geochem 8:3–9. https://doi.org/10.1016/S0883-2927(09)80002-4

    Article  Google Scholar 

  • Kabata-Pendias A, Sadurski W (2004) Trace elements and compounds in soil. In: Merian E, Anke M, Ihnat M, Stoeppler M (eds) Elements and their compounds in the environment: Occurrence, analysis and biological relevance. Wiley, Hoboken, pp 79–99

    Chapter  Google Scholar 

  • Kang J, Park J, Choi H, Burla B, Kretzschmar T, Lee Y, Martinoia E (2011) Plant ABC transporters. Am Soc Plant Biol 9:e0153. https://doi.org/10.1199/tab.0153

    Article  Google Scholar 

  • Kaplan O, Ince M, Yaman M (2011) Sequential extraction of cadmium in different soil phases and plant parts from a former industrialized area. Environ Chem Lett 9:397–404. https://doi.org/10.1007/s10311-010-0292-0

    Article  CAS  Google Scholar 

  • Kapoor D, Kaur S, Bhardwaj R (2014) Physiological and biochemical changes in Brassica juncea plants under Cd-induced stress. Biomed Res Int 2014:1–13. https://doi.org/10.1155/2014/726070

    Article  CAS  Google Scholar 

  • Katoh M, Moriguchi S, Takagi N, Akashi Y, Sato T (2018) Simultaneous control of cadmium release and acidic pH neutralization in excavated sedimentary rock with concurrent oxidation of pyrite using steel slag. J Soil Sediment 18:1194–1204. https://doi.org/10.1007/s11368-017-1892-0

    Article  CAS  Google Scholar 

  • Kaur R, Yadav P, Sharma A, Thukral AK, Kumar V, Kohli SK, Bhardwaj R (2017) Castasterone and citric acid treatment restores photosynthetic attributes in Brassica juncea L. under Cd(II) toxicity. Ecotoxicol Environ Saf 145:466–475. https://doi.org/10.1016/j.ecoenv.2017.07.067

    Article  CAS  Google Scholar 

  • Kaur R, Yadav P, Thukral AK, Sharma A, Bhardwaj R, Alyemeni MN, Wijaya L, Ahmad P (2018) Castasterone and citric acid supplementation alleviates cadmium toxicity by modifying antioxidants and organic acids in Brassica juncea. J Plant Growth Regul 37:286–299. https://doi.org/10.1007/s00344-017-9727-1

    Article  CAS  Google Scholar 

  • Keesstra S, Mol G, de Leeuw J, Okx J, de Cleen M, Visser S (2018) Soil-related sustainable development goals: four concepts to make land degradation neutrality and restoration work. Land 7:133. https://doi.org/10.3390/land7040133

    Article  Google Scholar 

  • Khan S, Munir S, Sajjad M, Li G (2016) Urban park soil contamination by potentially harmful elements and human health risk in Peshawar City, Khyber Pakhtunkhwa, Pakistan. J Geochem Explor 165:102–110. https://doi.org/10.1016/j.gexplo.2016.03.007

    Article  CAS  Google Scholar 

  • Khan MA, Khan S, Khan A, Alam M (2017) Soil contamination with cadmium, consequences and remediation using organic amendments. Sci Total Environ 601:1591–1605. https://doi.org/10.1016/j.scitotenv.2017.06.030

    Article  CAS  Google Scholar 

  • Khanna K, Jamwal VL, Gandhi SG, Ohri P, Bhardwaj R (2019) Metal resistant PGPR lowered Cd uptake and expression of metal transporter genes with improved growth and photosynthetic pigments in Lycopersicon esculentum under metal toxicity. Sci Rep 9:1–14. https://doi.org/10.1038/s41598-019-41899-3

    Article  CAS  Google Scholar 

  • Kim SU, Owens VN, Kim SY, Hong CO (2017) Effect of different way of bottom ash and compost application on phytoextractability of cadmium in contaminated arable soil. Appl Biol Chem 60:353–362. https://doi.org/10.1007/s13765-017-0287-7

    Article  CAS  Google Scholar 

  • Kirkham MB (2006) Cadmium in plants on polluted soils: effects of soil factors, hyperaccumulation, and amendments. Geoderma 137:19–32. https://doi.org/10.1016/j.geoderma.2006.08.024

    Article  CAS  Google Scholar 

  • Konotop Y, Mészáros P, Spieß N, Mistríková V, Piršelová B, Libantová J, Moravčíková J, Taran N, Hauptvogel P, Matušíková I (2012) Defense responses of soybean roots during exposure to cadmium, excess of nitrogen supply and combinations of these stressors. Mol Biol Rep 39:10077–10087. https://doi.org/10.1007/s11033-012-1881-8

    Article  CAS  Google Scholar 

  • Kotoky R, Nath S, Maheshwari DK, Pandey P (2019) Cadmium resistant plant growth promoting rhizobacteria Serratia marcescens S2I7 associated with the growth promotion of rice plant. Environ Sustain 2:135–144. https://doi.org/10.1007/s42398-019-00055-3

    Article  CAS  Google Scholar 

  • Kováčik J, Bačkor M (2007) Phenylalanine ammonia-lyase and phenolic compounds in chamomile tolerance to cadmium and copper excess. Water Air Soil Pollut 185:185–193. https://doi.org/10.1007/s11270-007-9441-x

    Article  CAS  Google Scholar 

  • Kováčik J, Klejdus B, Hedbavny J, Štork F, Bačkor M (2009) Comparison of cadmium and copper effect on phenolic metabolism, mineral nutrients and stress-related parameters in Matricaria chamomilla plants. Plant Soil 320:231. https://doi.org/10.1007/s11104-009-9889-0

    Article  CAS  Google Scholar 

  • Kováčik J, Klejdus B, Hedbavny J (2010) Effect of aluminium uptake on physiology, phenols and amino acids in Matricaria chamomilla plants. J Hazard Mater 178:949–955. https://doi.org/10.1016/j.jhazmat.2010.02.029

    Article  CAS  Google Scholar 

  • Kudo K, Kudo H, Kawai S (2007) Cadmium uptake in barley affected by iron concentration of the medium: role of phytosiderophores. Soil Sci Plant Nutr 53:259–266. https://doi.org/10.1111/j.1747-0765.2007.00131.x

    Article  CAS  Google Scholar 

  • Kudo K, Kudo H, Fujikawa YK, Kawai S (2013) The release of copper-induced phytosiderophores in barley plants is decreased by cadmium stress. Botany 91:568–572. https://doi.org/10.1139/cjb-2013-0035

    Article  CAS  Google Scholar 

  • Kumar V, Sharma A, Kaur P, Sidhu GPS, Bali AS, Bhardwaj R, Thukral AK, Cerda A (2019) Pollution assessment of heavy metals in soils of India and ecological risk assessment: a state-of-the-art. Chemosphere 216:449–462. https://doi.org/10.1016/j.chemosphere.2018.10.066

    Article  CAS  Google Scholar 

  • Lapie C, Leglize P, Paris C, Buisson T, Sterckeman T (2019) Profiling of main metabolites in root exudates and mucilage collected from maize submitted to cadmium stress. Environ Sci Pollut Res 26:17520–17534. https://doi.org/10.1007/s11356-019-05168-0

    Article  CAS  Google Scholar 

  • Li WC, Ye ZH, Wong MH (2007) Effects of bacteria on enhanced metal uptake of the Cd/Zn-hyperaccumulating plant, Sedum alfredii. J Exp Bot 58:4173–4182. https://doi.org/10.1093/jxb/erm274

    Article  CAS  Google Scholar 

  • Li X, Yu H, Sun X, Yang J, Wang D, Shen L, Pan Y, Wu Y, Wang Q, Zhao Y (2019) Effects of sulfur application on cadmium bioaccumulation in tobacco and its possible mechanisms of rhizospheric microorganisms. J Hazard Mater 368:308–315. https://doi.org/10.1016/j.jhazmat.2018.12.099

    Article  CAS  Google Scholar 

  • Li ZR, Wang JX, An LZ, Tan JB, Zhan FD, Wu J, Zu YQ (2019) Effect of root exudates of intercropping Vicia faba and Arabis alpina on accumulation and sub-cellular distribution of lead and cadmium. Int J Phytoremediation 21:4–13. https://doi.org/10.1080/15226514.2018.1523867

    Article  CAS  Google Scholar 

  • Liu J, Qian M, Cai G, Zhu Q, Wong MH (2007) Variations between rice cultivars in root secretion of organic acids and the relationship with plant cadmium uptake. Environ Geochem Health 29:189–195. https://doi.org/10.1007/s10653-006-9063-z

    Article  CAS  Google Scholar 

  • Liu J, Magalhaes JV, Shaff J, Kochian LV (2009) Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. Plant J 57:389–399. https://doi.org/10.1111/j.1365-313X.2008.03696.x

    Article  CAS  Google Scholar 

  • Liu L, Li J, Yue F, Yan X, Wang F, Bloszies S, Wang Y (2018) Effects of arbuscular mycorrhizal inoculation and biochar amendment on maize growth, cadmium uptake and soil cadmium speciation in Cd-contaminated soil. Chemosphere 194:495–503. https://doi.org/10.1016/j.chemosphere.2017.12.025

    Article  CAS  Google Scholar 

  • Liu H, Xie Y, Li J, Zeng G, Li H, Xu F, Feng S, Xu H (2020) Effect of Serratia sp. K3 combined with organic materials on cadmium migration in soil-Vetiveria zizanioides L. system and bacterial community in contaminated soil. Chemosphere 242:125164. https://doi.org/10.1016/j.chemosphere.2019.125164

    Article  CAS  Google Scholar 

  • Llugany M, Tolrà R, Martín SR, Poschenrieder C, Barceló J (2013) Cadmium-induced changes in glutathione and phenolics of Thlaspi and Noccaea species differing in Cd accumulation. J Plant Nutr Soil Sci 176:851–858. https://doi.org/10.1002/jpln.201300096

    Article  CAS  Google Scholar 

  • Luo Q, Sun L, Hu X, Zhou R (2014) The variation of root exudates from the hyperaccumulator Sedum alfredii under cadmium stress: metabonomics analysis. PLoS ONE 9:e115581. https://doi.org/10.1371/journal.pone.0115581

    Article  CAS  Google Scholar 

  • Luo Q, Sun LN, Wang H, Hu XM (2015) Metabolic profiling analysis of root exudates from the Cd hyperaccumulator Sedum alfredii under different Cd exposure concentrations and times. Anal Methods 7:3793–3800. https://doi.org/10.1039/C5AY00159E

    Article  CAS  Google Scholar 

  • Ma Y, Rajkumar M, Zhang C, Freitas H (2016) Beneficial role of bacterial endophytes in heavymetal phytoremediation. J Environ Manag 174:14–25. https://doi.org/10.1016/j.jenvman.2016.02.047

    Article  CAS  Google Scholar 

  • Ma Q, Li J, Lee CC, Long X, Liu Y, Wu QT (2019) Combining potassium chloride leaching with vertical electrokinetics to remediate cadmium-contaminated soils. Environ Geochem Health 41:2081–2091. https://doi.org/10.1007/s10653-019-00259-w

    Article  CAS  Google Scholar 

  • Maeda H, Yoo H, Dudareva N (2011) Prephenate aminotransferase directs plant phenylalanine biosynthesis via arogenate. Nat Chem Biol 7:19–21. https://doi.org/10.1038/nchembio.485

    Article  CAS  Google Scholar 

  • Manquián-Cerda K, Escudey M, Zúñiga G, Arancibia-Miranda N, Molina M, Cruces E (2016) Effect of cadmium on phenolic compounds, antioxidant enzyme activity and oxidative stress in blueberry (Vaccinium corymbosum L.) plantlets grown in vitro. Ecotoxicol Environ Saf 133:316–326. https://doi.org/10.1016/j.ecoenv.2016.07.029

    Article  CAS  Google Scholar 

  • Manquián-Cerda K, Cruces E, Escudey M, Zúñiga G, Calderon R (2018) Interactive effects of aluminum and cadmium on phenolic compounds, antioxidant enzyme activity and oxidative stress in blueberry (Vaccinium corymbosum L.) plantlets cultivated in vitro. Ecotoxicol Environ Saf 150:320–326. https://doi.org/10.1016/j.ecoenv.2017.12.050

    Article  CAS  Google Scholar 

  • Márquez-García B, Fernández-Recamales M, Córdoba F (2012) Effects of cadmium on phenolic composition and antioxidant activities of Erica andevalensis. J Bot 2012:1–6. https://doi.org/10.1155/2012/936950

    Article  CAS  Google Scholar 

  • Maruyama H, Sasaki T, Yamammoto Y, Wasaki J (2019) AtALMT3 is involved in malate efflux induced by phosphorus deficiency in Arabidopsis thaliana root hairs. Plant Cell Physiol 60:107–115. https://doi.org/10.1093/pcp/pcy190

    Article  CAS  Google Scholar 

  • Meach M, Martin E (1991) Mobilization of cadmium and other metals from two soils by root exudates of Zea mays L., Nicotiana tabacum L. and Nicotiana rustica L. Plant Soil 132:187–196. https://doi.org/10.1007/BF00010399

    Article  Google Scholar 

  • Meda AR, Scheuermann EB, Prechsl UE, Erenoglu B, Schaaf G, Hayen H, Weber G, von Wirén N (2007) Iron acquisition by phytosiderophores contributes to cadmium tolerance. Plant Physiol 143:1761–1773. https://doi.org/10.1104/pp.106.094474

    Article  CAS  Google Scholar 

  • Meng J, Zhong L, Wang L, Liu X, Tang C, Chen H, Xu J (2018) Contrasting effects of alkaline amendments on the bioavailability and uptake of Cd in rice plants in a Cd-contaminated acid paddy soil. Environ Sci Pollut Res 25:8827–8835. https://doi.org/10.1007/s11356-017-1148-y

    Article  CAS  Google Scholar 

  • Mnasri M, Ghabriche R, Fourati E, Zaier H, Sabally K, Barrington S, Lutts S, Abdelly C, Ghnaya T (2015) Cd and Ni transport and accumulation in the halophyte Sesuvium portulacastrum: implication of organic acids in these processes. Front Plant Sci 6:156. https://doi.org/10.3389/fpls.2015.00156

    Article  Google Scholar 

  • Mombo S, Foucault Y, Deola F, Gaillard I, Goix S, Shahid M, Schreck E, Pierart A, Dumat C (2016) Management of human health risk in the context of kitchen gardens polluted by lead and cadmium near a lead recycling company. J Soil Sediment 16:1214–1224. https://doi.org/10.1007/s11368-015-1069-7

    Article  CAS  Google Scholar 

  • Moreira H, Marques AP, Franco AR, Rangel AO, Castro PM (2014) Phytomanagement of Cd-contaminated soils using maize (Zea mays L.) assisted by plant growth-promoting rhizobacteria. Environ Sci Pollut Res 21:9742–9753. https://doi.org/10.1007/s11356-014-2848-1

    Article  CAS  Google Scholar 

  • Muthusaravanan S, Sivarajasekar N, Vivek JS, Paramasivan T, Naushad M, Prakashmaran J, Gayathri V, Al-Duaij OK (2018) Phytoremediation of heavy metals: mechanisms, methods and enhancements. Environl Chem Lett 16:1339–1359. https://doi.org/10.1007/s10311-018-0762-3

    Article  CAS  Google Scholar 

  • Nawab J, Khan S, Aamir M, Shamshad I, Qamar Z, Din I, Huang Q (2016) Organic amendments impact the availability of heavy metal (loid) s in mine-impacted soil and their phytoremediation by Penisitum americanum and Sorghum bicolor. Environ Sci Pollut Res 23:2381–2390. https://doi.org/10.1007/s11356-015-5458-7

    Article  CAS  Google Scholar 

  • Nesler A, DalCorso G, Fasani E, Manara A, Di Sansebastiano GP, Argese E, Furini A (2017) Functional components of the bacterial CzcCBA efflux system reduce cadmium uptake and accumulation in transgenic tobacco plants. New Biotechnol 35:54–61. https://doi.org/10.1016/j.nbt.2016.11.006

    Article  CAS  Google Scholar 

  • Ning CH, Li WB, Xu QK, Li M, Guo SX (2019) Arbuscular mycorrhizal fungi enhance cadmium uptake of wetland plants in contaminated water. J Appl Ecol 30:2063–2071. https://doi.org/10.13287/j.1001-9332.201906.019

    Article  Google Scholar 

  • Okem A, Stirk WA, Street RA, Southway C, Finnie JF, Van Staden J (2015) Effects of Cd and Al stress on secondary metabolites, antioxidant and antibacterial activity of Hypoxis hemerocallidea Fisch. & CA Mey. Plant Physiol Biochem 97:147–155. https://doi.org/10.1016/j.plaphy.2015.09.015

    Article  CAS  Google Scholar 

  • Okolie CU, Chen H, Zhao Y, Tian D, Zhang L, Su M, Jiang Z, Li Z, Li H (2020) Cadmium immobilization in aqueous solution by Aspergillus niger and geological fluorapatite. Environ Sci Pollut Res 27:7647–7656. https://doi.org/10.1007/s11356-019-07500-0

    Article  CAS  Google Scholar 

  • Orelle C, Durmort C, Mathieu K, Duchêne B, Aros S, Fenaille F, André F, Junot C, Vernet T, Jault JM (2018) A multidrug ABC transporter with a taste for GTP. Sci Rep 8:2309. https://doi.org/10.1038/s41598-018-20558-z

    Article  CAS  Google Scholar 

  • Parrotta L, Guerriero G, Sergeant K, Cai G, Hausman JF (2015) Target or barrier? The cell wall of early- and later-diverging plants vs cadmium toxicity: differences in the response mechanisms. Front Plant Sci 6:133. https://doi.org/10.3389/fpls.2015.00133

    Article  Google Scholar 

  • Pérez M, Ramírez G, Serralde O, Peñaranda R, Wilches O, Ramírez L, Rengifo E (2019) Arbuscular mycorrhizal fungi (AMF) as a strategy to reduce the absorption of cadmium in cocoa (Theobroma cacao) plants. Terra Latinoam 37:121–130. https://doi.org/10.28940/terra.v37i2.479

    Article  Google Scholar 

  • Pinto AP, Simes I, Mota AM (2008) Cadmium impact on root exudates of sorghum and maize plants: a speciation study. J Plant Nutr 31:1746–1755. https://doi.org/10.1080/01904160802324829

    Article  CAS  Google Scholar 

  • Pohlmeier A (2004) Metal speciation, chelation and complexing ligands in plants. In: Prasad MNV (ed) Heavy metal stress in plants: from biomolecules to ecosystems. Springer, New Delhi, pp 28–46

    Chapter  Google Scholar 

  • Preece C, Peñuelas J (2019) A return to the wild: root exudates and food security. Trends Plant Sci 25:14–21. https://doi.org/10.1016/j.tplants.2019.09.010

    Article  CAS  Google Scholar 

  • Puschenreiter M, Gruber B, Wenzel WW, Schindlegger Y, Hann S, Spangl B, Schenkeveld WD, Kraemer SM, Oburger E (2017) Phytosiderophore-induced mobilization and uptake of Cd, Cu, Fe, Ni, Pb and Zn by wheat plants grown on metal-enriched soils. Environ Exp Bot 138:67–76. https://doi.org/10.1016/j.envexpbot.2017.03.011

    Article  CAS  Google Scholar 

  • Qi F, Lamb D, Naidu R, Bolan NS, Yan Y, Ok YS, Rahman MM, Choppala G (2018) Cadmium solubility and bioavailability in soils amended with acidic and neutral biochar. Sci Total Environ 610:1457–1466. https://doi.org/10.1016/j.scitotenv.2017.08.228

    Article  CAS  Google Scholar 

  • Qing LUO, Li-Na SUN, Xiao-Min HU (2015) Metabonomics study on root exudates of cadmium hyperaccumulator Sedum alfredii. Chin J Anal Chem 43:7–12. https://doi.org/10.1016/S1872-2040(15)60795-2

    Article  Google Scholar 

  • Rafiq MT, Aziz R, Yang X, Xiao W, Rafiq MK, Ali B, Li T (2014) Cadmium phytoavailability to rice (Oryza sativa L.) grown in representative Chinese soils. A model to improve soil environmental quality guidelines for food safety. Ecotoxicol Environ Saf 103:101–107. https://doi.org/10.1016/j.ecoenv.2013.10.016

    Article  CAS  Google Scholar 

  • Raghavan PS, Potnis AA, Bhattacharyya K, Salaskar DA, Rajaram H (2020) Axenic cyanobacterial (Nostoc muscorum) biofilm as a platform for Cd(II) sequestration from aqueous solutions. Algal Res 46:101778. https://doi.org/10.1016/j.algal.2019.101778

    Article  Google Scholar 

  • Rasmann S, Turlings TC (2016) Root signals that mediate mutualistic interactions in the rhizosphere. Curr Opin Plant Biol 32:62–68. https://doi.org/10.1016/j.pbi.2016.06.017

    Article  CAS  Google Scholar 

  • Reddy KR, Reddy CV, Nadagouda MN, Shetti NP, Jaesool S, Aminabhavi TM (2019) Polymeric graphitic carbon nitride (g-C3N4)-based semiconducting nanostructured materials: synthesis methods, properties and photocatalytic applications. J Environ Manag 238:25–40. https://doi.org/10.1016/j.jenvman.2019.02.075

    Article  CAS  Google Scholar 

  • Riesen O, Feller U (2005) Redistribution of nickel, cobalt, manganese, zinc, and cadmium via the phloem in young and maturing wheat. J Plant Nutr 28:421–430. https://doi.org/10.1081/PLN-200049153

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Qayyum MF, Ok YS, Zia-ur-Rehman M, Abbas Z, Hannan F (2017) Use of maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: a critical review. Environ Geochem Health 39:259–277. https://doi.org/10.1007/s10653-016-9826-0

    Article  CAS  Google Scholar 

  • Rocco C, Seshadri B, Adamo P, Bolan NS, Mbene K, Naidu R (2018) Impact of waste-derived organic and inorganic amendments on the mobility and bioavailability of arsenic and cadmium in alkaline and acid soils. Environ Sci Pollut Res 25:25896–25905. https://doi.org/10.1007/s11356-018-2655-1

    Article  CAS  Google Scholar 

  • Rocha J, Tacão M, Fidalgo C, Alves A, Henriques I (2016) Diversity of endophytic Pseudomonas in Halimione portulacoides from metal (loid)-polluted salt marshes. Environ Sci Pollut Res 23:13255–13267. https://doi.org/10.1007/s11356-016-6483-x

    Article  Google Scholar 

  • Rohani N, Daneshmand F, Vaziri A, Mahmoudi M, Saber-Mahani F (2019) Growth and some physiological characteristics of Pistacia vera L. cv Ahmad Aghaei in response to cadmium stress and Glomus mosseae symbiosis. S Afr J Bot 124:499–507. https://doi.org/10.1016/j.sajb.2019.06.001

    Article  CAS  Google Scholar 

  • Römheld V, Awad F (2000) Significance of root exudates in acquisition of heavy-metals from a contaminated calcareous soil by graminaceous species. J Plant Nutr 23:1857–1866. https://doi.org/10.1080/01904160009382148

    Article  Google Scholar 

  • Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Biol 52:527–560. https://doi.org/10.1146/annurev.arplant.52.1.527

    Article  CAS  Google Scholar 

  • Saber NE, Abdel-Moneim AM, Barakat SY (1999) Role of organic acids in sunflower tolerance to heavy metals. Biol Plantarum 42:65–73. https://doi.org/10.1023/A:1002115425544

    Article  CAS  Google Scholar 

  • Saeki K, Kunito T (2012) Influence of chloride ions on cadmium adsorptions by oxides, hydroxides, oxyhydroxides, and phyllosilicates. Appl Clay Sci 62–63:58–62. https://doi.org/10.1016/j.clay.2012.04.018

    Article  CAS  Google Scholar 

  • Saengwilai P, Meeinkuirt W, Phusantisampan T, Pichtel J (2019) Immobilization of cadmium in contaminated soil using organic amendments and its effects on rice growth performance. Expos Health. https://doi.org/10.1007/s12403-019-00312-0

    Article  Google Scholar 

  • Sangthong C, Setkit K, Prapagdee B (2016) Improvement of cadmium phytoremediation after soil inoculation with a cadmium-resistant Micrococcus sp. Environ Sci Pollut Res 23:756–764. https://doi.org/10.1007/s11356-015-5318-5

    Article  CAS  Google Scholar 

  • Seregin IV, Ivanov VB (1997) Histochemical investigation of cadmium and lead distribution in plants. Russ J Plant Physiol 44:791–796

    CAS  Google Scholar 

  • Shahid M, Pinelli E, Dumat C (2012) Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands. J Hazard Mater 219:1–12. https://doi.org/10.1016/j.jhazmat.2012.01.060

    Article  CAS  Google Scholar 

  • Shahid M, Austruy A, Echevarria G, Arshad M, Sanaullah M, Aslam M, Nadeem M, Nasim W, Dumat C (2014) EDTA-enhanced phytoremediation of heavy metals: a review. Soil Sediment Contam 23:389–416. https://doi.org/10.1080/15320383.2014.831029

    Article  CAS  Google Scholar 

  • Shahid M, Dumat C, Khalid S, Niazi NK, Antunes PM (2016) Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system. Rev Environ Contam Toxicol 241:73–137

    Google Scholar 

  • Shan S, Guo Z, Lei P, Wang Y, Li Y, Cheng W, Zhang M, Wu S, Yi H (2019) Simultaneous mitigation of tissue cadmium and lead accumulation in rice via sulfate-reducing bacterium. Ecotoxicol Environ Saf 169:292–300. https://doi.org/10.1016/j.ecoenv.2018.11.030

    Article  CAS  Google Scholar 

  • Sharma RK, Archana G (2016) Cadmium minimization in food crops by cadmium resistant plant growth promoting rhizobacteria. Appl Soil Ecol 107:66–78. https://doi.org/10.1016/j.apsoil.2016.05.009

    Article  Google Scholar 

  • Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726. https://doi.org/10.1093/jxb/erj073

    Article  CAS  Google Scholar 

  • Sharma T, Dreyer I, Kochian L, Pineros MA (2016) The ALMT family of organic acid transporters in plants and their involvement in detoxification and nutrient security. Front Plant Sci 7:1488. https://doi.org/10.3389/fpls.2016.01488

    Article  Google Scholar 

  • Sharma R, Bhardwaj R, Gautam V, Kohli SK, Kaur P, Bali RS, Saini P, Thukral AK, Arora S, Vig AP (2018) Microbial siderophores in metal detoxification and therapeutics: recent prospective and applications. In: Egamberdieva D, Ahmad P (eds) Plant microbiome: stress response. Springer, Singapore, pp 337–350

    Chapter  Google Scholar 

  • She W, Zhu S, Jie Y, Xing H, Cui G (2015) Expression profiling of cadmium response genes in ramie (Boehmeria nivea L.) root. Bull Environ Contam Toxicol 94:453–459. https://doi.org/10.1007/s00128-015-1502-z

    Article  CAS  Google Scholar 

  • Shen Y, Zhu W, Li H, Ho SH, Chen J, Xie Y, Shi X (2018) Enhancing cadmium bioremediation by a complex of water-hyacinth derived pellets immobilized with Chlorella sp. Bioresour Technol 257:157–163. https://doi.org/10.1016/j.biortech.2018.02.060

    Article  CAS  Google Scholar 

  • Shenker M, Fan TWM, Crowley DE (2001) Phytosiderophores influence on cadmium mobilization and uptake by wheat and barley plants. J Environ Qual 30:2091–2098. https://doi.org/10.2134/jeq2001.2091

    Article  CAS  Google Scholar 

  • Shi G, Liu C, Cai Q, Liu Q, Hou C (2010) Cadmium accumulation and tolerance of two safflower cultivars in relation to photosynthesis and antioxidative enzymes. Bull Environ Contam Toxicol 85:256–263. https://doi.org/10.1007/s00128-010-0067-0

    Article  CAS  Google Scholar 

  • Shi M, Zhao Z, Song Y, Xu M, Li J, Yao L (2020) A novel heat-treated humic acid/MgAl-layered double hydroxide composite for efficient removal of cadmium: fabrication, performance and mechanisms. Appl Clay Sci 187:105482. https://doi.org/10.1016/j.clay.2020.105482

    Article  CAS  Google Scholar 

  • Sidhu GPS, Singh HP, Batish DR, Kohli RK (2017) Tolerance and hyperaccumulation of cadmium by a wild, unpalatable herb Coronopus didymus (L.) Sm. (Brassicaceae). Ecotoxicol Environ Saf 135:209–215. https://doi.org/10.1016/j.ecoenv.2016.10.001

    Article  CAS  Google Scholar 

  • Sidhu GPS, Bali AS, Singh HP, Batish DR, Kohli RK (2018) Ethylenediamine disuccinic acid enhanced phytoextraction of nickel from contaminated soils using Coronopus didymus (L.) Sm. Chemosphere 205:234–243. https://doi.org/10.1016/j.chemosphere.2018.04.106

    Article  CAS  Google Scholar 

  • Sidhu GPS, Bali AS, Bhardwaj R (2019a) Use of fungi in mitigating cadmium toxicity in plants. In: Hasanuzzaman M, Prasad MNV, Fujita M (eds) Cadmium toxicity and tolerance in plants. Academic Press, Cambridge, pp 397–426

    Chapter  Google Scholar 

  • Sidhu GPS, Bali AS, Bhardwaj R (2019b) Role of organic acids in mitigating cadmium toxicity in plants. In: Hasanuzzaman M, Prasad MNV, Fujita M (eds) Cadmium tolerance in plants. Academic Press, Cambridge, pp 255–279

    Chapter  Google Scholar 

  • Sidhu GPS, Bali AS, Singh HP, Batish DR, Kohli RK (2020) Insights into the tolerance and phytoremediation potential of Coronopus didymus L.(Sm) grown under zinc stress. Chemosphere 244:125350. https://doi.org/10.1016/j.chemosphere.2019.125350

    Article  CAS  Google Scholar 

  • Silber A, Bar-Yosef B, Suryano S, Levkovitch I (2012) Zinc adsorption by perlite: effects of pH, ionic strength, temperature, and pre-use as growth substrate. Geoderma 170:159–167. https://doi.org/10.1016/j.geoderma.2011.11.028

    Article  CAS  Google Scholar 

  • Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2016) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143. https://doi.org/10.3389/fpls.2015.01143

    Article  Google Scholar 

  • Sinha S, Mukherjee SK (2008) Cadmium–induced siderophore production by a high Cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization. Curr Microbiol 56:55–60. https://doi.org/10.1007/s00284-007-9038-z

    Article  CAS  Google Scholar 

  • Siripornadulsil S, Traina S, Verma DPS, Sayre RT (2002) Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell 14:2837–2847. https://doi.org/10.1105/tpc.004853

    Article  CAS  Google Scholar 

  • Sobrino-Plata J, Meyssen D, Cuypers A, Escobar C, Hernández LE (2014) Glutathione is a key antioxidant metabolite to cope with mercury and cadmium stress. Plant Soil 377:369–381. https://doi.org/10.1007/s11104-013-2006-4

    Article  CAS  Google Scholar 

  • Song Y, Hudek L, Freestone D, Puhui J, Michalczyk AA, Senlin Z, Ackland ML (2014) Comparative analyses of cadmium and zinc uptake correlated with changes in natural resistance-associated macrophage protein (NRAMP) expression in Solanum nigrum L. and Brassica rapa. Environ Chem 11:653–660. https://doi.org/10.1071/EN14078

    Article  CAS  Google Scholar 

  • Stoknes K, Scholwin F, Jasinska A, Wojciechowska E, Mleczek M, Hanc A, Niedzielski P (2019) Cadmium mobility in a circular food-to-waste-to-food system and the use of a cultivated mushroom (Agaricus subrufescens) as a remediation agent. J Environ Manag 245:48–54. https://doi.org/10.1016/j.jenvman.2019.03.134

    Article  CAS  Google Scholar 

  • Sullivan TS, McBride MB, Thies JE (2013) Soil bacterial and archaeal community composition reflects high spatial heterogeneity of pH, bioavailable Zn, and Cu in a metalliferous peat soil. Soil Biol Biochem 66:102–109. https://doi.org/10.1016/j.soilbio.2013.06.021

    Article  CAS  Google Scholar 

  • Sun RL, Zhou QX, Jin CX (2006) Cadmium accumulation in relation to organic acids in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator. Plant Soil 285:125–134. https://doi.org/10.1007/s11104-006-0064-6

    Article  CAS  Google Scholar 

  • Sun Y, Sun G, Xu Y, Wang L, Liang X, Lin D (2013) Assessment of sepiolite for immobilization of cadmium-contaminated soils. Geoderma 193:149–155. https://doi.org/10.1016/j.geoderma.2012.07.012

    Article  CAS  Google Scholar 

  • Sun J, Li X, Ai X, Liu J, Yin Y, Huang Y, Zhou H, Huang K (2018) Efficient removal of cadmium from soil-washing effluents by garlic peel biosorbent. Environ Sci Pollut Res 25:19001–19011. https://doi.org/10.1007/s11356-018-2109-9

    Article  CAS  Google Scholar 

  • Takanashi K, Shitan N, Yazaki K (2014) The multidrug and toxic compound extrusion (MATE) family in plants. Plant Biotechnol 31:417–430. https://doi.org/10.5511/plantbiotechnology.14.0904a

    Article  CAS  Google Scholar 

  • Tan IAW, Chan JC, Hameed BH, Lim LLP (2016) Adsorption behavior of cadmium ions onto phosphoric acid-impregnated microwave-induced mesoporous activated carbon. J Water Process Eng 14:60–70. https://doi.org/10.1016/j.jwpe.2016.10.007

    Article  Google Scholar 

  • Tang X, Li Q, Wang Z, Hu Y, Hu Y, Li R (2018) In situ electrokinetic isolation of cadmium from paddy soil through pore water drainage: effects of voltage gradient and soil moisture. Chem Eng J 337:210–219. https://doi.org/10.1016/j.cej.2017.12.111

    Article  CAS  Google Scholar 

  • Tang L, Hamid Y, Gurajala HK, He Z, Yang X (2019) Effects of CO2 application and endophytic bacterial inoculation on morphological properties, photosynthetic characteristics and cadmium uptake of two ecotypes of Sedum alfredii Hance. Environ Sci Pollut Res 26:1809–1820. https://doi.org/10.1007/s11356-018-3680-9

    Article  CAS  Google Scholar 

  • Tao Q, Hou D, Yang X, Li T (2016) Oxalate secretion from the root apex of Sedum alfredii contributes to hyperaccumulation of Cd. Plant Soil 398:139–152. https://doi.org/10.1007/s11104-015-2651-x

    Article  CAS  Google Scholar 

  • Tao Q, Jupa R, Luo J, Lux A, Kováč J, Wen Y, Zhou Y, Jan J, Liang Y, Li T (2017) The apoplasmic pathway via the root apex and lateral roots contributes to Cd hyperaccumulation in the hyperaccumulator Sedum alfredii. J Exp Bot 68:739–751. https://doi.org/10.1093/jxb/erw453

    Article  CAS  Google Scholar 

  • Tavangar T, Karimi M, Rezakazemi M, Reddy KR, Aminabhavi TM (2020) Textile waste, dyes/inorganic salts separation of cerium oxide-loaded loose nanofiltration polyethersulfone membranes. Chem Eng J 385:123787. https://doi.org/10.1016/j.cej.2019.123787

    Article  CAS  Google Scholar 

  • Tudoreanu L, Phillips CJC (2004) Modeling cadmium uptake and accumulation in plants. Adv Agron 84:121

    Article  CAS  Google Scholar 

  • Ueno D, Yamaji N, Kono I, Huang CFT, Yano M, Ma JF (2010) Gene limiting cadmium accumulation in rice. Proc Natl Acad Sci USA 107:16500–16505. https://doi.org/10.1073/pnas.1005396107

    Article  Google Scholar 

  • Uraguchi S, Fujiwara T (2012) Cadmium transport and tolerance in rice: perspectives for reducing grain cadmium accumulation. Rice 5:5. https://doi.org/10.1186/1939-8433-5-5

    Article  Google Scholar 

  • Uraguchi S, Watanabe I, Yoshitomi A, Kiyono M, Kuno K (2006) Characteristics of cadmium accumulation and tolerance in novel Cd-accumulating crops, Avena strigosa and Crotalaria juncea. J Exp Bot 57:2955–2965. https://doi.org/10.1093/jxb/erl056

    Article  CAS  Google Scholar 

  • Uraguchi S, Kamiya T, Sakamoto T, Kasai K, Sato Y, Nagamura Y, Yoshida A, Kyozuka J, Ishikawa S, Fujiwara T (2011) Low affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proc Natl Acad Sci USA 108:20959–20964. https://doi.org/10.1073/pnas.1116531109

    Article  Google Scholar 

  • Vives-Peris V, de Ollas C, Gómez-Cadenas A, Pérez-Clemente RM (2019) Root exudates: from plant to rhizosphere and beyond. Plant Cell Rep 39:3–17. https://doi.org/10.1007/s00299-019-02447-5

    Article  CAS  Google Scholar 

  • Wang K, Zhang J, Zhu Z, Huang H, Li T, He Z, Yang X, Alva A (2012) Pig manure vermicompost (PMVC) can improve phytoremediation of Cd and PAHs cocontaminated soil by Sedum alfredii. J Soil Sediment 12:1089–1099. https://doi.org/10.1007/s11368-012-0539-4

    Article  CAS  Google Scholar 

  • Wang X, Shi Y, Chen X, Huang B (2015) Screening of Cd-safe genotypes of Chinese cabbage in field condition and Cd accumulation in relation to organic acids in two typical genotypes under long-term Cd stress. Environ Sci Pollut Res 22:16590–16599. https://doi.org/10.1007/s11356-015-4838-3

    Article  CAS  Google Scholar 

  • Wang R, Wei S, Jia P, Liu T, Hou D, Xie R, Lin Z, Ge J, Qiao Y, Chang X, Lu L, Tian S (2019) Biochar significantly alters rhizobacterial communities and reduces Cd concentration in rice grains grown on Cd-contaminated soils. Sci Total Environ 676:627–638. https://doi.org/10.1016/j.scitotenv.2019.04.133

    Article  CAS  Google Scholar 

  • Wang Q, Ge C, Wu Y, Sahito ZA, Ma L, Pan F, Zhou Q, Huang L, Feng Y, Yang X (2020) The endophytic bacterium Sphingomonas SaMR12 alleviates Cd stress in oilseed rape through regulation of the GSH-AsA cycle and antioxidative enzymes. BMC Plant Biol 20:1–14. https://doi.org/10.1186/s12870-020-2273-1

    Article  CAS  Google Scholar 

  • Weston LA, Ryan PR, Watt M (2012) Mechanisms for cellular transport and release of allelochemicals from plant roots into the rhizosphere. J Exp Bot 63:3445–3454. https://doi.org/10.1093/jxb/ers054

    Article  CAS  Google Scholar 

  • WHO (2007) Health risks of heavy metals from long-range transboundary air pollution. World Health Organization 2007. WHO Regional Office for Europe, Copenhagen

  • Wong CKE, Cobbett CS (2009) HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana. New Phytol 181:71–78. https://doi.org/10.1111/j.1469-8137.2008.02638.x

    Article  CAS  Google Scholar 

  • Wu B, He T, Wang Z, Qiao S, Wang Y, Xu F, Xu H (2020) Insight into the mechanisms of plant growth promoting strain SNB6 on enhancing the phytoextraction in cadmium contaminated soil. J Hazard Mater 385:121587. https://doi.org/10.1016/j.jhazmat.2019.121587

    Article  CAS  Google Scholar 

  • Xiao R, Wang P, Mi S, Ali A, Liu X, Li Y, Zhang Z (2019) Effects of crop straw and its derived biochar on the mobility and bioavailability in Cd and Zn in two smelter-contaminated alkaline soils. Ecotoxicol Environ Saf 181:155–163. https://doi.org/10.1016/j.ecoenv.2019.06.005

    Article  CAS  Google Scholar 

  • Xie X, Weiss DJ, Weng B, Liu J, Lu H, Yan C (2013) The short-term effect of cadmium on low molecular weight organic acid and amino acid exudation from mangrove (Kandelia obovata (S., L.) Yong) roots. Environ Sci Pollut Res 20:997–1008. https://doi.org/10.1007/s11356-012-1031-9

    Article  CAS  Google Scholar 

  • Xin J, Huang B, Dai H, Zhou W, Yi Y, Peng L (2015) Roles of rhizosphere and root-derived organic acids in Cd accumulation by two hot pepper cultivars. Environ Sci Pollut Res 22:6254–6261. https://doi.org/10.1007/s11356-014-3854-z

    Article  CAS  Google Scholar 

  • Xu J, Zhu YY, Ge Q, Li YL, Sun JH, Zhang Y, Liu XJ (2012) Comparative physiological responses of Solanum nigrum and Solanum torvum to cadmium stress. New Phytol 196:125–138. https://doi.org/10.1111/j.1469-8137.2012.04236.x

    Article  CAS  Google Scholar 

  • Xu S, Xing Y, Liu S, Huang Q, Chen W (2019) Role of novel bacterial Raoultella sp. strain X13 in plant growth promotion and cadmium bioremediation in soil. Appl Microbiol Biotechnol 103:3887–3897. https://doi.org/10.1007/s00253-019-09700-7

    Article  CAS  Google Scholar 

  • Xue W, Peng Z, Huang D, Zeng G, Wan J, Xu R, Cheng M, Zhang C, Jiang D, Hu Z (2018) Nanoremediation of cadmium contaminated river sediments: microbial response and organic carbon changes. J Hazard Mater 359:290–299. https://doi.org/10.1016/j.jhazmat.2018.07.062

    Article  CAS  Google Scholar 

  • Yang H, Yang ZM, Zhou LX, Wong JW (2001) Ability of Agrogyron elongatum to accumulate the single metal of cadmium, copper, nickel and lead and root exudation of organic acids. J Environ Sci 13:368–375

    CAS  Google Scholar 

  • Yokosho K, Yamaji N, Ma JF (2011) An Al-inducible MATE gene is involved in external detoxification of Al in rice. Plant J 68:1061–1069. https://doi.org/10.1111/j.1365-313X.2011.04757.x

    Article  CAS  Google Scholar 

  • Yousaf B, Liu G, Wang R, Zia-ur-Rehman M, Rizwan MS, Imtiaz M, Shakoor A (2016) Investigating the potential influence of biochar and traditional organic amendments on the bioavailability and transfer of Cd in the soil–plant system. Environ Earth Sci 75:374. https://doi.org/10.1007/s12665-016-5285-2

    Article  CAS  Google Scholar 

  • Yu HY, Liu C, Zhu J, Li F, Deng DM, Wang Q, Liu C (2016) Cadmium availability in rice paddy fields from a mining area: the effects of soil properties highlighting iron fractions and pH value. Environ Pollut 209:38–45. https://doi.org/10.1016/j.envpol.2015.11.021

    Article  CAS  Google Scholar 

  • Zeng X, Xu H, Jijie L, Chen Q, Li W, Wu L, Tang J, Ma L (2020) The immobilization of soil cadmium by the combined amendment of bacteria and hydroxyapatite. Sci Rep 10:2189. https://doi.org/10.1038/s41598-020-58259-1

    Article  CAS  Google Scholar 

  • Zhang L, Wang H (2002) Changes of root exudates to Cadmium stress in wheat (Triticum aestivum L.). Acta Ecol Sin 22:496–502

    Google Scholar 

  • Zhang M, Liu X, Yuan L, Wu K, Duan J, Wang X, Yang L (2012) Transcriptional profiling in cadmium-treated rice seedling roots using suppressive subtractive hybridization. Plant Physiol Biochem 50:79–86. https://doi.org/10.1016/j.plaphy.2011.07.015

    Article  CAS  Google Scholar 

  • Zhang Y, He Q, Xia L, Li Y, Song S (2018) Algae cathode microbial fuel cells for cadmium removal with simultaneous electricity production using nickel foam/graphene electrode. Biochem Eng J 138:179–187. https://doi.org/10.1016/j.bej.2018.07.021

    Article  CAS  Google Scholar 

  • Zhang F, Liu M, Li Y, Che Y, Xiao Y (2019) Effects of arbuscular mycorrhizal fungi, biochar and cadmium on the yield and element uptake of Medicago sativa. Sci Total Environ 655:1150–1158. https://doi.org/10.1016/j.scitotenv.2018.11.317

    Article  CAS  Google Scholar 

  • Zhang XF, Hu ZH, Yan TX, Lu RR, Peng CL, Li SS, Jing YX (2019) Arbuscular mycorrhizal fungi alleviate Cd phytotoxicity by altering Cd subcellular distribution and chemical forms in Zea mays. Ecotoxicol Environ Saf 171:352–360. https://doi.org/10.1016/j.ecoenv.2018.12.097

    Article  CAS  Google Scholar 

  • Zhou G, Delhaize E, Zhou M, Ryan PR (2013) The barley MATE gene, HvAACT1, increases citrate efflux and Al3+ tolerance when expressed in wheat and barley. Ann Bot 112:603–612. https://doi.org/10.1093/aob/mct135

    Article  CAS  Google Scholar 

  • Zhu XF, Zheng C, Hu YT, Jiang TAO, Liu YU, Dong NY, Yang JL, Zheng SJ (2011) Cadmium-induced oxalate secretion from root apex is associated with cadmium exclusion and resistance in Lycopersicon esulentum. Plant, Cell Environ 34:1055–1064. https://doi.org/10.1111/j.1365-3040.2011.02304.x

    Article  CAS  Google Scholar 

  • Zhu Y, Hu X, Duan Y, Li S, Wang Y, Rehman AU, He J, Zhang J, Hua D, Yang L, Wang L (2020) The Arabidopsis nodulin homeobox factor atndx interacts with AtRING1A/B and negatively regulates abscisic acid signaling. Plant Cell 32:703–721. https://doi.org/10.1105/tpc.19.00604

    Article  CAS  Google Scholar 

  • Zieliński J, Huculak-Mączka M, Kaniewski M, Nieweś D, Hoffmann K, Hoffmann J (2019) Kinetic modelling of cadmium removal from wet phosphoric acid by precipitation method. Hydrometallurgy 190:105157. https://doi.org/10.1016/j.hydromet.2019.105157

    Article  CAS  Google Scholar 

  • Zoghlami LB, Djebali W, Abbes Z, Hediji H, Maucourt M, Moing A, Brouquisse R, Chaïbi W (2011) Metabolite modifications in Solanum lycopersicum roots and leaves under cadmium stress. Afr J Biotechnol 10:567–579. https://doi.org/10.5897/AJB10.1275

    Article  CAS  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4