A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://doi.org/10.1007/s00220-015-2340-x below:

Reflection Positivity for Parafermions | Communications in Mathematical Physics

  • Au-Yang H., Perk J.H.H.: Parafermions in the τ 2 model. J. Phys. A Math. Theor. 47, 315002 (2014). doi:10.1088/1751-8113/47/31/315002

    Article  ADS  MathSciNet  Google Scholar 

  • Barkeshli M., Qi X.-L.: Topological nematic states and non-Abelian lattice dislocations. Phys. Rev. X 2, 031013 (2012). doi:10.1103/PhysRevX.2.031013

    Google Scholar 

  • Barkeshli, M., Jian, C.-M., Qi, X.-L.: Twist defects and projective non-Abelian braiding statistics. Phys. Rev. B 87, 045130. doi:10.1103/PhysRevB.87.045130

  • Baxter R.J.: A simple solvable Z N Hamiltonian. Phys. Lett. A 140, 155–157 (1989). doi:10.1016/0375-9601(89)90884-0

    Article  ADS  MathSciNet  Google Scholar 

  • Baxter R.J.: Superintegrable chiral Potts model: thermodynamic properties, an “inverse” model, and a simple associated Hamiltonian. J. Stat. Phys. 57, 1–39 (1989). doi:10.1007/BF01023632

    Article  ADS  MathSciNet  Google Scholar 

  • Baxter R.J.: Transfer matrix functional relations for the generalized τ 2(t q ) model. J. Stat. Phys. 117, 1–25 (2004). doi:10.1023/B:JOSS.0000044062.64287.b9

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Baxter R.J.: The τ 2 model and parafermions. J. Phys. A Math. Theor. 47, 315001 (2014). doi:10.1088/1751-8113/47/31/315001

    Article  ADS  MathSciNet  Google Scholar 

  • Biskup, M.: Reflection positivity and phase transitions in lattice spin models. In: Kotecky, R. (ed.) Methods of Contemporary Mathematical Statistical Physics. Lecture Notes in Mathematics, vol. 1970, pp. 1–86. Springer, Berlin (2009). doi:10.1007/978-3-540-92796-9

  • Bondesan, R., Quella, T.: Topological and symmetry broken phases of \({\mathbb{Z}_{N}}\) parafermions in one dimension. J. Stat. Mech. P10024 (2013). doi:10.1088/1742-5468/2013/10/P10024

  • Clarke D.J., Alicea J., Shtengel K.: Exotic non-Abelian anyons from conventional fractional quantum Hall states. Nat. Commun. 4, 1348 (2013). doi:10.1038/ncomms2340

    Article  ADS  Google Scholar 

  • Chesi S., Jaffe A., Loss D., Pedrocchi F.L.: Vortex loops and Majoranas. J. Math. Phys. 54, 112203 (2013). doi:10.1063/1.4829273

    Article  ADS  MathSciNet  Google Scholar 

  • Cobanera E., Ortiz G.: Fock parafermions and self-dual representations of the braid group. Phys. Rev. A 89, 012328 (2014). doi:10.1103/PhysRevA.89.012328

    Article  ADS  Google Scholar 

  • Dyson F.J., Lieb E.H., Simon B.: Phase transitions in quantum spin systems with isotropic and nonisotropic interactions. J. Stat. Phys. 18, 335–383 (1978). doi:10.1007/978-3-662-10018-9_12

    Article  ADS  MathSciNet  Google Scholar 

  • Fendley, P.: Parafermionic edge zero modes in \({\mathbb{Z}_{N}}\) -invariant spin chains. J. Stat. Mech. P11020 (2012). doi:10.1088/1742-5468/2012/11/P11020

  • Fendley P.: Free parafermions. J. Phys. A Math. Theor. 47, 075001 (2014). doi:10.1088/1751-8113/47/7/075001

    Article  ADS  MathSciNet  Google Scholar 

  • Fradkin E., Kadanoff L.: Disorder variables and parafermions in two-dimensional statistical mechanics. Nucl. Phys. B 170 [FS1], 1–15 (1980). doi:10.1016/0550-3213(80)90472-1

    Article  ADS  Google Scholar 

  • Fröhlich J., Lieb E.: Phase transitions in anisotropic lattice spin systems. Commun. Math. Phys. 60, 233–267 (1978). doi:10.1007/BF01612891

    Article  ADS  Google Scholar 

  • Fröhlich J., Simon B., Spencer T.: Infrared bounds, phase transitions, and continuous symmetry breaking. Commun. Math. Phys. 50, 78–85 (1976). doi:10.1007/BF01608557

    Article  ADS  Google Scholar 

  • Fröhlich J., Gabbiani F.: Braid statistics in local quantum field theory. Rev. Math. Phys. 2, 251–353 (1990). doi:10.1142/S0129055X90000107

    Article  MATH  MathSciNet  Google Scholar 

  • Green H.S.: A generalized method of field quantization. Phys. Rev. 90, 270–273 (1953). doi:10.1103/PhysRev.90.270

    Article  ADS  MATH  Google Scholar 

  • Hatano N., Nelson D.R.: Localization transitions in non-Hermitian quantum mechanics. Phys. Rev. Lett. 77, 570 (1996). doi:10.1103/PhysRevLett.77.570

    Article  ADS  Google Scholar 

  • ’t Hooft G.: On the phase transition towards permanent quark confinement. Nucl. Phys. B 138, 1–15 (1978). doi:10.1016/0550-3213(78)90153-0

    Article  ADS  MathSciNet  Google Scholar 

  • Jaffe A., Jäkel C., Martinez II R.E.: Complex classical fields: a framework for reflection positivity. Commun. Math. Phys. 329, 1–28 (2014). doi:10.1007/s00220-014-2040-y

    Article  ADS  MATH  Google Scholar 

  • Jaffe A., Jäkel C., Martinez II R.E.: Complex classical fields: an example. J. Funct. Anal. 266, 1833–1881 (2014). doi:10.1016/j.jfa.2013.08.033

    Article  MATH  MathSciNet  Google Scholar 

  • Jaffe, A., Pedrocchi, F.L.: Reflection positivity for Majoranas. Ann. Henri Poincaré 16, 189–203 (2015). doi:10.1007/s00023-014-0311-y

  • Jaffe A., Pedrocchi F.L.: Topological order and reflection positivity. Europhys. Lett. (EPL) 105, 40002 (2014). doi:10.1209/0295-5075/105/40002

    Article  ADS  Google Scholar 

  • Klinovaja J., Loss D.: Parafermions in interacting nanowire bundle. Phys. Rev. Lett. 112, 246403 (2014). doi:10.1103/PhysRevLett.112.246403

    Article  ADS  Google Scholar 

  • Klinovaja J., Loss D.: Time-reversal invariant parafermions in interacting rashba nanowires. Phys. Rev. B 90, 045118 (2014). doi:10.1103/PhysRevB.90.045118

    Article  ADS  Google Scholar 

  • Lieb E.H.: Flux phase of the half-filled band. Phys. Rev. Lett. 73, 2158 (1994). doi:10.1103/PhysRevLett.73.2158

    Article  ADS  Google Scholar 

  • Lindner N.H., Berg E., Refael G., Stern A.: Fractionalizing Majorana fermions: non-Abelian statistics in the edges of Abelian quantum hall states. Phys. Rev. X 2, 041002 (2012). doi:10.1103/PhysRevX.2.041002

    Google Scholar 

  • Macris N., Nachtergaele B.: On the flux phase conjecture at half-filling: an improved proof. J. Stat. Phys. 85, 745–761 (1996). doi:10.1007/BF02199361

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Mong R.S.K., Clarke D.J., Alicea J., Lindner N.H., Fendley P., Nayak C., Oreg Y., Stern A., Berg E., Shtengel K., Fisher M.P.A.: Universal topological quantum computation from superconductor-Abelian quantum hall heterostructure. Phys. Rev. X 4, 011036 (2014). doi:10.1103/PhysRevX.4.011036

    Google Scholar 

  • Morris A.O.: On a generalized clifford algebra. Q. J. Math. Oxf. 18, 7–12 (1967). doi:10.1093/qmath/18.1.7

    Article  ADS  MATH  Google Scholar 

  • Motruk J., Berg E., Turner A.M., Pollmann F.: Topological phases in gapped edges of fractionalized systems. Phys. Rev. B 88, 085115 (2013). doi:10.1103/PhysRevB.88.085115

    Article  ADS  Google Scholar 

  • Nayak C., Simon S.H., Stern A., Freedman M., Das Sarma S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083 (2008). doi:10.1103/RevModPhys.80.1083

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Nelson D.R., Shnerb N.M.: Non-Hermitian localization and population biology. Phys. Rev. E 58, 1383 (1998). doi:10.1103/PhysRevE.58.1383

    Article  ADS  MathSciNet  Google Scholar 

  • Osterwalder K., Schrader R.: Axioms for Euclidean Green’s functions, I. Commun. Math. Phys. 31, 83–112 (1973). doi:10.1007/BF01645738

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Osterwalder K., Schrader R.: Axioms for Euclidean Green’s functions, II. Commun. Math. Phys. 42, 281–305 (1975). doi:10.1007/BF01608978

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Osterwalder K., Schrader R.: Euclidean Fermi fields and a Feynman–Kac formula for boson–fermion interactions. Helv. Phys. Acta 46, 227–302 (1973). doi:10.5169/seals-114484

    MathSciNet  Google Scholar 

  • Sylvester, J.J.: A word on nonions. Johns Hopkins Univ. Circ. 1(17), 241–242 (1882). https://jscholarship.library.jhu.edu/bitstream/handle/1774.2/32845/I017.PDF

  • Sylvester, J.J.: On quaternions, nonions, sedenions, etc. Johns Hopkins Univ. Circ. 3(27), 7–9 (1883). https://jscholarship.library.jhu.edu/handle/1774.2/32855

  • Trefethen L.N., Embree M.: Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press, Princeton (2005)

    Google Scholar 

  • Vaezi A.: Fractional topological superconductor with fractionalized Majorana fermions. Phys. Rev. B 87, 035132 (2013). doi:10.1103/PhysRevB.87.035132

    Article  ADS  Google Scholar 

  • Yamazaki, K.: On projective representations and ring extensions of finite groups. J. Fac. Sci Univ. Tokyo Sect. I 10, 147–195 (1964). http://repository.dl.itc.u-tokyo.ac.jp/dspace/bitstream/2261/6042/1/jfs100205.pdf


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4