A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://doi.org/10.1007/JHEP06(2011)128 below:

MadGraph 5: going beyond | Journal of High Energy Physics

  • A. Pukhov et al., CompHEP: a package for evaluation of Feynman diagrams and integration over multi-particle phase space. User’s manual for version 33, hep-ph/9908288 [SPIRES].

  • CompHEP collaboration, E. Boos et al., CompHEP 4.4: automatic computations from lagrangians to events, Nucl. Instrum. Meth. A 534 (2004) 250 [hep-ph/0403113] [SPIRES].

    ADS  Google Scholar 

  • A. Pukhov, Calchep 2.3: MSSM, structure functions, event generation, 1 and generation of matrix elements for other packages, hep-ph/0412191 [SPIRES].

  • T. Stelzer and W.F. Long, Automatic generation of tree level helicity amplitudes, Comput. Phys. Commun. 81 (1994) 357 [hep-ph/9401258] [SPIRES].

    Article  ADS  Google Scholar 

  • F. Maltoni and T. Stelzer, MadEvent: automatic event generation with MadGraph, JHEP 02 (2003) 027 [hep-ph/0208156] [SPIRES].

    Article  ADS  Google Scholar 

  • J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [SPIRES].

    Article  ADS  Google Scholar 

  • T. Gleisberg et al., SHERPA 1.alpha, a proof-of-concept version, JHEP 02 (2004) 056 [hep-ph/0311263] [SPIRES].

    Article  ADS  Google Scholar 

  • F. Caravaglios and M. Moretti, An algorithm to compute Born scattering amplitudes without Feynman graphs, Phys. Lett. B 358 (1995) 332 [hep-ph/9507237] [SPIRES].

    ADS  Google Scholar 

  • P. Draggiotis, R.H.P. Kleiss and C.G. Papadopoulos, On the computation of multigluon amplitudes, Phys. Lett. B 439 (1998) 157 [hep-ph/9807207] [SPIRES].

    ADS  Google Scholar 

  • C. Duhr, S. Hoeche and F. Maltoni, Color-dressed recursive relations for multi-parton amplitudes, JHEP 08 (2006) 062 [hep-ph/0607057] [SPIRES].

    Article  ADS  Google Scholar 

  • M. Moretti, T. Ohl and J. Reuter, O’Mega: an optimizing matrix element generator, hep-ph/0102195 [SPIRES].

  • W. Kilian, T. Ohl and J. Reuter, WHIZARD: simulating multi-particle processes at LHC and ILC, arXiv:0708.4233 [SPIRES].

  • W. Kilian, W HIZARD 1.0: a generic Monte-Carlo integration and event generation package for multi-particle processes. Manual, LC-TOOL-2001-039.

  • M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [SPIRES].

    Article  ADS  Google Scholar 

  • C.G. Papadopoulos and M. Worek, HELAC: a Monte Carlo generator for multi-jet processes, hep-ph/0606320 [SPIRES].

  • T. Gleisberg and S. Hoeche, Comix, a new matrix element generator, JHEP 12 (2008) 039 [arXiv:0808.3674] [SPIRES].

    Article  ADS  Google Scholar 

  • N.D. Christensen and C. Duhr, FeynRules — Feynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [SPIRES].

    Article  ADS  Google Scholar 

  • N.D. Christensen et al., A comprehensive approach to new physics simulations, Eur. Phys. J. C 71 (2011) 1541 [arXiv:0906.2474] [SPIRES].

    ADS  Google Scholar 

  • C. Duhr and B. Fuks, A superspace module for the FeynRules package, arXiv:1102.4191 [SPIRES].

  • C. Degrande et al., UFO — The Universal FeynRules Output.

  • T. Gleisberg and F. Krauss, Automating dipole subtraction for QCD NLO calculations, Eur. Phys. J. C 53 (2008) 501 [arXiv:0709.2881] [SPIRES].

    Article  ADS  Google Scholar 

  • M.H. Seymour and C. Tevlin, TeVJet: a general framework for the calculation of jet observables in NLO QCD, arXiv:0803.2231 [SPIRES].

  • K. Hasegawa, S. Moch and P. Uwer, Automating dipole subtraction, Nucl. Phys. Proc. Suppl. 183 (2008) 268 [arXiv:0807.3701] [SPIRES].

    Article  ADS  Google Scholar 

  • R. Frederix, T. Gehrmann and N. Greiner, Automation of the dipole subtraction method in MadGraph/MadEvent, JHEP 09 (2008) 122 [arXiv:0808.2128] [SPIRES].

    Article  ADS  Google Scholar 

  • M. Czakon, C.G. Papadopoulos and M. Worek, Polarizing the dipoles, JHEP 08 (2009) 085 [arXiv:0905.0883] [SPIRES].

    Article  ADS  Google Scholar 

  • R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading order computations in QCD: the FKS subtraction, JHEP 10 (2009) 003 [arXiv:0908.4272] [SPIRES].

    Article  ADS  Google Scholar 

  • G. Zanderighi, Recent theoretical progress in perturbative QCD, arXiv:0810.3524 [SPIRES].

  • R.K. Ellis, K. Melnikov and G. Zanderighi, Generalized unitarity at work: first NLO QCD results for hadronic W + 3 jet production, JHEP 04 (2009) 077 [arXiv:0901.4101] [SPIRES].

    Article  ADS  Google Scholar 

  • C.F. Berger et al., Precise predictions for W + 3 jet production at hadron colliders, Phys. Rev. Lett. 102 (2009) 222001 [arXiv:0902.2760] [SPIRES].

    Article  ADS  Google Scholar 

  • A. van Hameren, C.G. Papadopoulos and R. Pittau, Automated one-loop calculations: a proof of concept, JHEP 09 (2009) 106 [arXiv:0903.4665] [SPIRES].

    Article  ADS  Google Scholar 

  • C.F. Berger et al., Next-to-Leading Order QCD predictions for Z, γ + 3-jet distributions at the Tevatron, Phys. Rev. D 82 (2010) 074002 [arXiv:1004.1659] [SPIRES].

    ADS  Google Scholar 

  • C.F. Berger et al., Precise predictions for W + 4 jet production at the Large Hadron Collider, Phys. Rev. Lett. 106 (2011) 092001 [arXiv:1009.2338] [SPIRES].

    Article  ADS  Google Scholar 

  • G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP 03 (2008) 042 [arXiv:0711.3596] [SPIRES].

    Article  ADS  Google Scholar 

  • V. Hirschi et al., Automation of one-loop QCD corrections, JHEP 05 (2011) 044 [arXiv:1103.0621] [SPIRES].

    Article  ADS  Google Scholar 

  • T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].

    Article  ADS  Google Scholar 

  • G. Corcella et al., HERWIG 6.5: an event generator for Hadron Emission Reactions With Interfering Gluons (including supersymmetric processes), JHEP 01 (2001) 010 [hep-ph/0011363] [SPIRES].

    Article  ADS  Google Scholar 

  • T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [SPIRES].

    Article  ADS  Google Scholar 

  • S. Catani, F. Krauss, R. Kuhn and B.R. Webber, QCD matrix elements + parton showers, JHEP 11 (2001) 063 [hep-ph/0109231] [SPIRES].

    Article  ADS  Google Scholar 

  • F. Krauss, Matrix elements and parton showers in hadronic interactions, JHEP 08 (2002) 015 [hep-ph/0205283] [SPIRES].

    Article  ADS  Google Scholar 

  • S. Mrenna and P. Richardson, Matching matrix elements and parton showers with HERWIG and PYTHIA, JHEP 05 (2004) 040 [hep-ph/0312274] [SPIRES].

    Article  ADS  Google Scholar 

  • M.L. Mangano, M. Moretti, F. Piccinini and M. Treccani, Matching matrix elements and shower evolution for top-quark production in hadronic collisions, JHEP 01 (2007) 013 [hep-ph/0611129] [SPIRES].

    Article  ADS  Google Scholar 

  • L. Lönnblad, Correcting the colour-dipole cascade model with fixed order matrix elements, JHEP 05 (2002) 046 [hep-ph/0112284] [SPIRES].

    Article  Google Scholar 

  • N. Lavesson and L. Lönnblad, W + jets matrix elements and the dipole cascade, JHEP 07 (2005) 054 [hep-ph/0503293] [SPIRES].

    Article  ADS  Google Scholar 

  • S. Hoeche, F. Krauss, S. Schumann and F. Siegert, QCD matrix elements and truncated showers, JHEP 05 (2009) 053 [arXiv:0903.1219] [SPIRES].

    Article  ADS  Google Scholar 

  • S. Hoeche et al., Matching parton showers and matrix elements, hep-ph/0602031 [SPIRES].

  • J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [SPIRES].

    Article  ADS  Google Scholar 

  • F. Krauss, A. Schalicke, S. Schumann and G. Soff, Simulating W/Z + jets production at the Tevatron, Phys. Rev. D 70 (2004) 114009 [hep-ph/0409106] [SPIRES].

    ADS  Google Scholar 

  • C. Englert, T. Plehn, P. Schichtel and S. Schumann, Jets plus missing energy with an autofocus, Phys. Rev. D 83 (2011) 095009 [arXiv:1102.4615] [SPIRES].

    ADS  Google Scholar 

  • J. Alwall, S. de Visscher and F. Maltoni, QCD radiation in the production of heavy colored particles at the LHC, JHEP 02 (2009) 017 [arXiv:0810.5350] [SPIRES].

    Article  ADS  Google Scholar 

  • S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [SPIRES].

    Article  ADS  Google Scholar 

  • S. Frixione, P. Nason and B.R. Webber, Matching NLO QCD and parton showers in heavy flavour production, JHEP 08 (2003) 007 [hep-ph/0305252] [SPIRES].

    Article  ADS  Google Scholar 

  • P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [SPIRES].

    Article  ADS  Google Scholar 

  • S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [SPIRES].

    Article  ADS  Google Scholar 

  • J. Alwall et al., Aloha — Automatic helas routines for helicity amplitude calculations in any quantum field theory.

  • T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  • H. Murayama, I. Watanabe and K. Hagiwara, HELAS: HELicity amplitude subroutines for Feynman diagram evaluations, KEK-91-11.

  • G.C. Cho et al., Weak boson fusion production of supersymmetric particles at the LHC, Phys. Rev. D 73 (2006) 054002 [hep-ph/0601063] [SPIRES].

    ADS  Google Scholar 

  • A. Denner, H. Eck, O. Hahn and J. Kublbeck, Feynman rules for fermion number violating interactions, Nucl. Phys. B 387 (1992) 467 [SPIRES].

    Article  ADS  Google Scholar 

  • M.L. Mangano and S.J. Parke, Multi-parton amplitudes in gauge theories, Phys. Rept. 200 (1991) 301 [hep-th/0509223] [SPIRES].

    Article  ADS  Google Scholar 

  • V. Del Duca, L.J. Dixon and F. Maltoni, New color decompositions for gauge amplitudes at tree and loop level, Nucl. Phys. B 571 (2000) 51 [hep-ph/9910563] [SPIRES].

    Article  ADS  Google Scholar 

  • F. Maltoni, K. Paul, T. Stelzer and S. Willenbrock, Color-flow decomposition of QCD amplitudes, Phys. Rev. D 67 (2003) 014026 [hep-ph/0209271] [SPIRES].

    ADS  Google Scholar 

  • F.A. Berends and W.T. Giele, Recursive calculations for processes with n gluons, Nucl. Phys. B 306 (1988) 759 [SPIRES].

    Article  ADS  Google Scholar 

  • R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  • S. Frixione, Colourful FKS subtraction, arXiv:1106.0155 [SPIRES].

  • T. Han, I. Lewis and T. McElmurry, QCD corrections to scalar diquark production at hadron colliders, JHEP 01 (2010) 123 [arXiv:0909.2666] [SPIRES].

    Article  ADS  Google Scholar 

  • J. Alwall et al., A standard format for Les Houches event files, Comput. Phys. Commun. 176 (2007) 300 [hep-ph/0609017] [SPIRES].

    Article  ADS  Google Scholar 

  • J. Alwall et al., A Les Houches interface for BSM generators, arXiv:0712.3311 [SPIRES].

  • K. Hagiwara, J. Kanzaki, Q. Li and K. Mawatari, HELAS and MadGraph/MadEvent with spin-2 particles, Eur. Phys. J. C 56 (2008) 435 [arXiv:0805.2554] [SPIRES].

    Article  ADS  Google Scholar 

  • K. Hagiwara, K. Mawatari and Y. Takaesu, HELAS and MadGraph with spin-3/2 particles, Eur. Phys. J. C 71 (2011) 1529 [arXiv:1010.4255] [SPIRES].

    ADS  Google Scholar 

  • P. Draggiotis, M.V. Garzelli, C.G. Papadopoulos and R. Pittau, Feynman rules for the rational part of the QCD 1-loop amplitudes, JHEP 04 (2009) 072 [arXiv:0903.0356] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  • N. D. Christensen and C. Speckner, Automated validation of FeynRules models.

  • C. Zhang and S. Willenbrock, Effective-field-theory approach to top-quark production and decay, Phys. Rev. D 83 (2011) 034006 [arXiv:1008.3869] [SPIRES].

    ADS  Google Scholar 

  • J.A. Aguilar-Saavedra, Effective four-fermion operators in top physics: a roadmap, Nucl. Phys. B 843 (2011) 638 [arXiv:1008.3562] [SPIRES].

    Article  ADS  Google Scholar 

  • C. Degrande, J.-M. Gerard, C. Grojean, F. Maltoni and G. Servant, Non-resonant new physics in top pair production at hadron colliders, JHEP 03 (2011) 125 [arXiv:1010.6304] [SPIRES].

    Article  ADS  Google Scholar 

  • C. Degrande, J.-M. Gerard, C. Grojean, F. Maltoni and G. Servant, An effective approach to same sign top pair production at the LHC and the forward-backward asymmetry at the Tevatron, arXiv:1104.1798 [SPIRES].

  • S. Ovyn, X. Rouby and V. Lemaitre, Delphes, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [SPIRES].

  • J. Conway, Pretty Good Simulator, http://www.physics.ucdavis.edu/˜conway/research/software/pgs/pgs.html

  • L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4