Springer+ Basic
€34.99 /Month
Price includes VAT (Germany)
Instant access to the full article PDF.
ReferencesAdams, R.A., Clarke, F.H.: Gross's logarithmic sobolev inequality: a simple proof (preprint)
Berestycki, H., Cazenave, T.: To appear
Berestycki, H., Lions, P.L.: Existence d'ondes solitaires dans des problèmes nonlinéaires du type Klein-Gordon. C. R. Paris287, 503–506 (1978);288, 395–398 (1979)
Berestycki, H., Lions, P.L.: Nonlinear scalar fields equations. Parts I and II. Arch. Rat. Mech. Anal. (to appear)
Berger, M.S.: On the existence and structure of stationary states for a nonlinear Klein-Gordon equation. J. Funct. Anal.9, 249–261 (1972)
Bialynicki-Birula, I., Mycielski, J.: Nonlinear wave mechanics. Ann. Phys.100, 62–93 (1976)
Cazenave, T.: Equations de Schrödinger non linéaires. Thèse de 3ème cycle Univ. P. et M. Curie, Paris (1978)
Cazenave, T.: Equations de Schrödinger non linéaires en dimension deux. Proc. R. Soc. Edin88, 327–346 (1979)
Cazenave, T.: Stable solutions of the logarithmic Schrödinger equation. Nonlinear Anal. T.M.A. (to appear)
Ginibre, J., Velo, G.: On a class of nonlinear Schrödinger equations. I. The Gauchy problem, general case. J. Funct. Anal.32, 1–32 (1979)
Ginibre, J., Velo, G.: On a class of nonlinear Schrödinger equations. III. Special theories in dimensions 1, 2, and 3. Ann. Inst. Henri Poincaré28, 287–316 (1978)
Ginibre, J., Velo, G.: Equation de Schrödinger non linéaire avec interaction non locale. C. R. Paris288, 683–685 (1979)
Ginibre, J., Velo, G.: On a class of nonlinear Schrödinger equations with non local interaction. Math. Zeitschr. (to appear)
Glassey, R.T.: On the blowing-up of solutions to the Cauchy Problem for nonlinear Schrödinger equations. J. Math. Phys.18, 1794–1797 (1977)
Hartree, D.: The wave mechanics of an atom with a non-Coulomb central field. Part I. Theory and methods. Proc. Camb. Philos. Soc.24, 89–132 (1968)
Kelley, P.L.: Self-focusing of optical beams. Phys. Rev. Lett.15, 1005–1008 (1965)
Lieb, E.H.: Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation. Stud. Appl. Math.57, 93–105 (1977)
Lieb, E.H., Simon, B.: The Hartree-Fock theory for Coulomb systems. Commun. Math. Phys.53, 185–194 (1974)
Lions, P.L.: The Choquard equation and related equations. Nonlinear Anal. T.M.A.4, 1063–1073 (1980)
Lions, P.L.: Some remarks on Hartree equation. Nonlinear Anal. T.M.A.5, 1245–1256 (1981)
Lions, P.L.: Principe de concentration — compacité en calcul des variations. C. R. Paris294, 261–264 (1982)
Lions, P.L.: To appear
Lin, J.E., Strauss, W.: Decay and scattering of solutions of a nonlinear Schrödinger equation. J. Funct. Anal.30, 245–263 (1978)
MacLeod, K., Serrin, J.: Personal communication
Nehari, Z.: On a nonlinear differential equation arising in nuclear physics. Proc. R. Irish Acad.62, 117–135 (1963)
Pecher, H., Von Wahl, W.: Time dependent nonlinear Schrödinger equations. Manuscripta Mathematica (to appear)
Reeken, M.: Global theorem on bifurcation and its application to the Hartree equation of the Helium atom. J. Math. Phys.11, 2505–2512 (1970)
Ryder, G.: Boundary value problems for a class of nonlinear differential equations. Pac. J. Math.22, 477–503 (1967)
Slater, J.C.: A note on Hartree's method. Phys. Rev.35, 210–211 (1930)
Strauss, W.: Existence of solitary waves in higher dimensions. Commun. Math. Phys.55, 149–162 (1977)
Strauss, W.: The nonlinear Schrödinger equation. Proceedings of the Rio conference, August 1977
Stuart, C.A.: Existence theory for the Hartree equation. Arch. Rat. Mech. Anal.51, 60–69 (1973)
Stuart, C.A.: An example in nonlinear functional analysis: the Hartree equation. J. Math. Anal. Appl.49, 725–733 (1975)
Suydam, B.R.: Self-focusing of very powerful laser beams. U.S. Dept. of Commerce. N.B.S. Special Publication 387
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4