A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://doi.org/10.1007/BF01403504 below:

Orbital stability of standing waves for some nonlinear Schrödinger equations

Access this article Subscribe and save

Springer+ Basic

€34.99 /Month

Subscribe now Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Institutional subscriptions

References
  1. Adams, R.A., Clarke, F.H.: Gross's logarithmic sobolev inequality: a simple proof (preprint)

  2. Berestycki, H., Cazenave, T.: To appear

  3. Berestycki, H., Lions, P.L.: Existence d'ondes solitaires dans des problèmes nonlinéaires du type Klein-Gordon. C. R. Paris287, 503–506 (1978);288, 395–398 (1979)

    Google Scholar 

  4. Berestycki, H., Lions, P.L.: Nonlinear scalar fields equations. Parts I and II. Arch. Rat. Mech. Anal. (to appear)

  5. Berger, M.S.: On the existence and structure of stationary states for a nonlinear Klein-Gordon equation. J. Funct. Anal.9, 249–261 (1972)

    Google Scholar 

  6. Bialynicki-Birula, I., Mycielski, J.: Nonlinear wave mechanics. Ann. Phys.100, 62–93 (1976)

    Google Scholar 

  7. Cazenave, T.: Equations de Schrödinger non linéaires. Thèse de 3ème cycle Univ. P. et M. Curie, Paris (1978)

  8. Cazenave, T.: Equations de Schrödinger non linéaires en dimension deux. Proc. R. Soc. Edin88, 327–346 (1979)

    Google Scholar 

  9. Cazenave, T.: Stable solutions of the logarithmic Schrödinger equation. Nonlinear Anal. T.M.A. (to appear)

  10. Ginibre, J., Velo, G.: On a class of nonlinear Schrödinger equations. I. The Gauchy problem, general case. J. Funct. Anal.32, 1–32 (1979)

    Google Scholar 

  11. Ginibre, J., Velo, G.: On a class of nonlinear Schrödinger equations. III. Special theories in dimensions 1, 2, and 3. Ann. Inst. Henri Poincaré28, 287–316 (1978)

    Google Scholar 

  12. Ginibre, J., Velo, G.: Equation de Schrödinger non linéaire avec interaction non locale. C. R. Paris288, 683–685 (1979)

    Google Scholar 

  13. Ginibre, J., Velo, G.: On a class of nonlinear Schrödinger equations with non local interaction. Math. Zeitschr. (to appear)

  14. Glassey, R.T.: On the blowing-up of solutions to the Cauchy Problem for nonlinear Schrödinger equations. J. Math. Phys.18, 1794–1797 (1977)

    Google Scholar 

  15. Hartree, D.: The wave mechanics of an atom with a non-Coulomb central field. Part I. Theory and methods. Proc. Camb. Philos. Soc.24, 89–132 (1968)

    Google Scholar 

  16. Kelley, P.L.: Self-focusing of optical beams. Phys. Rev. Lett.15, 1005–1008 (1965)

    Google Scholar 

  17. Lieb, E.H.: Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation. Stud. Appl. Math.57, 93–105 (1977)

    Google Scholar 

  18. Lieb, E.H., Simon, B.: The Hartree-Fock theory for Coulomb systems. Commun. Math. Phys.53, 185–194 (1974)

    Google Scholar 

  19. Lions, P.L.: The Choquard equation and related equations. Nonlinear Anal. T.M.A.4, 1063–1073 (1980)

    Google Scholar 

  20. Lions, P.L.: Some remarks on Hartree equation. Nonlinear Anal. T.M.A.5, 1245–1256 (1981)

    Google Scholar 

  21. Lions, P.L.: Principe de concentration — compacité en calcul des variations. C. R. Paris294, 261–264 (1982)

    Google Scholar 

  22. Lions, P.L.: To appear

  23. Lin, J.E., Strauss, W.: Decay and scattering of solutions of a nonlinear Schrödinger equation. J. Funct. Anal.30, 245–263 (1978)

    Google Scholar 

  24. MacLeod, K., Serrin, J.: Personal communication

  25. Nehari, Z.: On a nonlinear differential equation arising in nuclear physics. Proc. R. Irish Acad.62, 117–135 (1963)

    Google Scholar 

  26. Pecher, H., Von Wahl, W.: Time dependent nonlinear Schrödinger equations. Manuscripta Mathematica (to appear)

  27. Reeken, M.: Global theorem on bifurcation and its application to the Hartree equation of the Helium atom. J. Math. Phys.11, 2505–2512 (1970)

    Google Scholar 

  28. Ryder, G.: Boundary value problems for a class of nonlinear differential equations. Pac. J. Math.22, 477–503 (1967)

    Google Scholar 

  29. Slater, J.C.: A note on Hartree's method. Phys. Rev.35, 210–211 (1930)

    Google Scholar 

  30. Strauss, W.: Existence of solitary waves in higher dimensions. Commun. Math. Phys.55, 149–162 (1977)

    Google Scholar 

  31. Strauss, W.: The nonlinear Schrödinger equation. Proceedings of the Rio conference, August 1977

  32. Stuart, C.A.: Existence theory for the Hartree equation. Arch. Rat. Mech. Anal.51, 60–69 (1973)

    Google Scholar 

  33. Stuart, C.A.: An example in nonlinear functional analysis: the Hartree equation. J. Math. Anal. Appl.49, 725–733 (1975)

    Google Scholar 

  34. Suydam, B.R.: Self-focusing of very powerful laser beams. U.S. Dept. of Commerce. N.B.S. Special Publication 387

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4