A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://doi.org/10.1007/BF00731092 below:

Carbohydrate binding properties of the envelope glycoproteins of human immunodeficiency virus type 1

Abstract

Here, we confirm and extend our previous findings on human immunodeficiency virus type 1 (HIV-1) envelope glycoproteinN-acetylglucosaminyl binding properties. We show the occurrence of saturable, temperature, pH, and calcium dependent carbohydrate-specific interactions between recombinant precursor gp160 (rgp160) and two affinity matrices:d-mannose-divinylsulfone-agarose, and natural glycoprotein, fetuin, also coupled to agarose. Binding of rgp160 to the matrices was inhibited by soluble mannosyl derivatives, α-d-Man17-BSA and mannan, by β-d-GlcNAc47-BSA and by glycopeptides from Pronase-treated porcine thyroglobulin, which produces oligomannose and complex N-linked glycans. Glycopeptides from Endoglycosidase H-treated thyroglobulin partially inhibited rgp160 binding, as did the asialo-agalacto-tetraantennary precursor oligosaccharide of human α1-acid glycoprotein for binding to fetuin-agarose. β-d-Glucan and β-d-Gal17-BSA had no or only limited effect. Also, surface unit rgp120 specifically interacted with fetuin-agarose and soluble fetuin, but in the latter case with a twofold reduced affinity relative to rgp160. After affinity chromatography, rgp160 was specifically retained by the two matrices and eluted by mannan in both cases, while rgp120 was not retained by fetuin-agarose but only eluted as a significantly retarded peak, which confirms its specific but weak interaction. Thus, rgp160 interacts with both oligomannose type, and the mannosyl core of complex type N-linked glycans, and its gp120 region plays a role in this interaction. Because fetuin and asialofetuin inhibit to nearly the same extent, the binding of rgp160 or rgp120 to fetuin-agarose, interaction with sialic acid or β-d-galactosyl structures of complex N- or O-linked glycans can be ruled out. Specific rgp160 and rgp120 binding to ap-aminophenyl-β-d-GlcNAc-agarose matrix, which was inhibited by β-d-GlcNAc47-BSA and by fetuin, confirms that HIV-1 envelope glycoproteins can also specifically interact with theN-acetylglucosaminyl core of oligosaccharide structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article Subscribe and save

Springer+ Basic

€34.99 /Month

Subscribe now Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others Explore related subjectsDiscover the latest articles and news from researchers in related subjects, suggested using machine learning. References
  1. Gelderblom HR (1991)AIDS 5:617–38.

    Google Scholar 

  2. Klatzmann D, McDougal JS, Maddon PJ (1990)Immunodef Rev 2:43–66.

    Google Scholar 

  3. Freed EO, Myers DJ, Risser R (1990)Proc Natl Acad Sci USA 87:4650–4.

    Google Scholar 

  4. Sharon N (1984)Immunol Today 5:143–7.

    Google Scholar 

  5. Wiley DC, Skehel JJ (1987)Ann Rev Biochem 56:365–94.

    Google Scholar 

  6. Fenouillet E, Clerget-Raslain B, Gluckman JC, Guetard D, Montagnier L, Bahraoui E (1989)J Exp Med 169:807–22.

    Google Scholar 

  7. Gattegno L, Sadeghi H, Saffar L, Bladier D, Clerget-Raslain B, Gluckman JC, Bahraoui E (1991)Carbohydr Res 213:79–93.

    Google Scholar 

  8. Fenouillet E, Gluckman JC, Bahraoui E (1990)J Virol 64:2841–8.

    Google Scholar 

  9. Clapham PR, Blanc D, Weiss RA (1991)Virology 181:703–15.

    Google Scholar 

  10. Weiss RA, Clapham PR (1992) InScience Challenging AIDS (Giraldo G, ed) pp 107–15. Basel: Karger.

    Google Scholar 

  11. Harouse JM, Bhat S, Spitalnik SL, Laughlin M, Stefano K, Silberberg DH, Gonzalez-Scarano F (1991)Science 253:320–3.

    Google Scholar 

  12. Maynard Y, Baenziger JYU (1982)J Biol Chem 257:3788–94.

    Google Scholar 

  13. Childs MA, Feizi T, Yuen, C, Drickamer K, Quesenberry (1990)J Biol Chem 265:20770–7.

    Google Scholar 

  14. Wain-Hobson S, Vartanian J, Henry M, Chenciner N, Cheynier R, Delassus S, Pedroza Martins L, Sala M, Nugeyre MT, Guetard D, Klatzmann D, Gluckman JC, Rozenbaum W, Barre-Sinoussi F, Montagnier L (1991)Science 252:961–5.

    Google Scholar 

  15. Kieny MP, Lathe R, Riviere Y, Dott K, Girard M, Montagnier L, Lecoq JP (1988)Protein Eng 2:219–25.

    Google Scholar 

  16. Westphal O, Schmidt M (1951)Justus Liebigs Ann Chem 574:84–90.

    Google Scholar 

  17. Maley F, Trimble RB, Tarentino AL, Plummer TH (1989)Anal Biochem 180:195–204.

    Google Scholar 

  18. Horejsi V, Matousek M, Ticha T, Trnka T (1985) InLectins (Bøg-Hansen TC, ed) pp 298–306 Berlin: Walter de Gruyter.

    Google Scholar 

  19. Sattentau QJ, Moore JP (1991)J Exp Med 174:407–15.

    Google Scholar 

  20. Mbemba E, Czyrski J, Gattegno L (1992)Biochim Biophys Acta in press.

  21. Thiriart C, Francotte M, Cohen J, Collignon C, Delers A, Kummert S, Molitor C, Gilles D, Roelants P, Wijnendaele FV, Dewiede M, Bruck C (1989)J Immunol 143: 1832–6.

    Google Scholar 

  22. Schols D, Pauwels R, Desmyter J, De Clerq E (1990)Virology 175:555–61.

    Google Scholar 

  23. Mbemba E, Chams V, Gluckman JC, Klatzmann D, Gattegno L (1991)Biochim Biophys Acta 1138:62–7.

    Google Scholar 

  24. Bhat S, Spitalnik SL, Gonzalez-Scarano F, Silberberg DH (1991)Proc Natl Acad Sci USA 88:7131–4.

    Google Scholar 

  25. Moore JP, Klasse PJ (1992)AIDS Res Hum Retroviruses 8:443–50.

    Google Scholar 

  26. Nakajima T, Ballou CE (1975)Biochem Biophys Res Comm 66:870–9.

    Google Scholar 

  27. Ronin C, Fenouillet E, Hovsepian S, Fayet G, Fournet B (1986)J Biol Chem 261:7287–93.

    Google Scholar 

  28. Fenouillet E, Fayet G, Hovsepian S, Bahraoui EM, Ronin C (1986)J Biol Chem 261:15153–8.

    Google Scholar 

  29. Green ED, Edelt G, Baenziger JU, Wilson S, Van Halbeek H (1988)J Biol Chem 263:18253–68.

    Google Scholar 

  30. Bendiak B, Brandts MH, Michnick SW, Carver JP, Cumming DA (1989)Biochemistry 28:6491–9.

    Google Scholar 

  31. Cumming DA, Hellerqvist CG, Harris-Brandts M, Michnick SW, Carver JP, Bendiak B (1989)Biochemistry 28:6500–12.

    Google Scholar 

  32. Pollard SR, Rosa MD, Rosa JJ, Wiley DC (1992)EMBO J 11:585–91.

    Google Scholar 

  33. Gluckman JC (1992) InScience Challenging AIDS (Giraldo G, ed) pp 226–37. Basel: Karger.

    Google Scholar 

  34. Fenouillet E, Gluckman JC (1992)Virology 187:825–8.

    Google Scholar 

  35. Bahraoui EM, Clerget-Raslain B, Chapuis F, Olivier R, Parravicini C, Yagello M, Montagnier L, Gluckman JC (1988)AIDS 2:165–70.

    Google Scholar 

  36. Tateno M, Gonzalez-Scarano F, Levy JA (1989)Proc Natl Acad Sci USA 86:4287–90.

    Google Scholar 

Download references

Author information Authors and Affiliations
  1. Laboratoire de Biologie Cellulaire, Faculté de Médecine Paris-Nord, 93012, Bobigny, France

    M. Haidar, N. Seddiki & L. Gattegno

  2. CNRS URA 1463, CERVI, Hôpital de la Pitié-Salpêtrière, 75651, Paris Cedex 13, France

    J. C. Gluckman

Authors
  1. M. Haidar
  2. N. Seddiki
  3. J. C. Gluckman
  4. L. Gattegno
About this article Cite this article

Haidar, M., Seddiki, N., Gluckman, J.C. et al. Carbohydrate binding properties of the envelope glycoproteins of human immunodeficiency virus type 1. Glycoconjugate J 9, 315–323 (1992). https://doi.org/10.1007/BF00731092

Download citation

Keywords

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4