A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://doi.org/10.1007/BF00715110 below:

Quantum mechanics in finite dimensions

Abstract

We explicitly compute, following the method of Weyl, the commutator [Q, P] of the position operatorQ and the momentum operatorP of a particle when the dimension of the space on which they act is finite with a discrete spectrum; and we show that in the limit of a continuous spectrum with the dimension going to infinity this reduces to the usual relation of Heisenberg.

This is a preview of subscription content, log in via an institution to check access.

Access this article Subscribe and save

Springer+

from €39.99 /Month

View plans Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others References
  1. H. Weyl,Theory of Groups and Quantum Mechanics (Dover, New York, 1950), pp. 272–280.

    Google Scholar 

  2. J. Schwinger,Proc. Nat. Acad. 46, 570 (1960).

    Google Scholar 

  3. A. Ramakrishnan,L-matrix Theory or the Grammar of Dirac Matrices (Tate McGraw-Hill, Bombay, 1972).

    Google Scholar 

  4. K. Morinaga and T. Nono,J. Sci. Hiroshima Univ. A6, 13 (1952).

    Google Scholar 

  5. K. Yamazaki, “6n Projective Representations and Ring Extensions of Finite Groups,”J. Fac. Sci., Univ. Tokyo, Sect. I 10, 147 (1964).

    Google Scholar 

  6. A. O. Morris,Quart. J. Math. (Oxford) 18, 7 (1967).

    Google Scholar 

  7. J. von Neumann,Mathematical Foundations of Quantum Mechanics (Princeton Univ. Press, Princeton, New Jersey, 1955).

    Google Scholar 

  8. F. R. Gantmacher,Matrix Theory (Chelsea, New York, 1959), Vol. I, p. 239.

    Google Scholar 

  9. W. Heisenberg,The Physical Principles of the Quantum Theory (Dover, New York, 1931), p. 129.

    Google Scholar 

  10. P. A. M. Dirac,Proc. Roy. Soc. A 113, 621 (1927).

    Google Scholar 

Download references

Author information Authors and Affiliations
  1. Matscience, Madras, India

    T. S. Santhanam

  2. Physikalisches Institut der Universität Wurzburg, West Germany

    T. S. Santhanam

  3. Matscience, Madras, India

    A. R. Tekumalla

Authors
  1. T. S. Santhanam
  2. A. R. Tekumalla
About this article Cite this article

Santhanam, T.S., Tekumalla, A.R. Quantum mechanics in finite dimensions. Found Phys 6, 583–587 (1976). https://doi.org/10.1007/BF00715110

Download citation

Keywords

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4