A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://doi.org/10.1007/978-981-287-769-7_5 below:

Humin Formation Pathways | SpringerLink

Abstract

Humins are undesired solids that form during the aqueous processing of cellulose-derived carbohydrates. Aldol addition/condensation involving intermediates with multiple keto groups is one mechanistic pathway by which humins can form. The Gibbs free energy changes for aldol addition/condensation reactions in the early stages of humin formation have been computed from first principles. On this basis, primary humin building blocks have been identified. The effect of the initial carbohydrate upon the structure of the humins formed, as characterized by infrared spectroscopy, can be rationalized in terms of these building blocks.

This is a preview of subscription content, log in via an institution to check access.

Similar content being viewed by others References
  1. Farrell AE (2006) Ethanol can contribute to energy and environmental goals. Science 311(5760):506–508. doi:10.1126/science.1121416

    Article  Google Scholar 

  2. Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59(6):618–628

    Article  Google Scholar 

  3. Hayes DJ (2009) An examination of biorefining processes, catalysts and challenges. Catal Today 145(1–2):138–151

    Article  Google Scholar 

  4. Mascal M, Nikitin EB (2008) Direct, high-yield conversion of cellulose into biofuel. Angew Chem Int Ed 47(41):7924–7926

    Article  Google Scholar 

  5. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106(9):4044–4098

    Article  Google Scholar 

  6. Girisuta B, Janssen LPBM, Heeres HJ (2007) Kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid. Ind Eng Chem Res 46(6):1696–1708

    Article  Google Scholar 

  7. Sasaki M, Kabyemela B, Malaluan R, Hirose S, Takeda N, Adschiri T, Arai K (1998) Cellulose hydrolysis in subcritical and supercritical water. J Supercrit Fluids 13(1–3):261–268

    Article  Google Scholar 

  8. Alauddin ZABZ, Lahijani P, Mohammadi M, Mohamed AR (2010) Gasification of lignocellulosic biomass in fluidized beds for renewable energy development: a review. Renew Sust Energ Rev 14(9):2852–2862. doi:10.1016/j.rser.2010.07.026

    Article  Google Scholar 

  9. Bulushev DA, Ross JRH (2011) Catalysis for conversion of biomass to fuels via pyrolysis and gasification: a review. Catal Today 171(1):1–13

    Article  Google Scholar 

  10. Vamvuka D (2011) Bio-oil, solid and gaseous biofuels from biomass pyrolysis processes-an overview. Int J Energy Res 35(10):835–862

    Article  Google Scholar 

  11. Baugh KD, McCarty PL (1988) Thermochemical pretreatment of lignocellulose to enhance methane fermentation: I. Monosaccharide and furfurals hydrothermal decomposition and product formation rates. Biotechnol Bioeng 31(1):50–61

    Article  Google Scholar 

  12. Chang C, Ma X, Cen P (2009) Kinetic studies on wheat straw hydrolysis to levulinic acid. Chin J Chem Eng 17(5):835–839

    Article  Google Scholar 

  13. Girisuta B, Janssen L, Heeres H (2006) A kinetic study on the conversion of glucose to levulinic acid. Chem Eng Res Des 84(A5):339–349. doi:10.1205/cherd05038

    Article  Google Scholar 

  14. Kabyemela BM, Adschiri T, Malaluan RM, Arai K (1997) Kinetics of glucose epimerization and decomposition in subcritical and supercritical water. Ind Eng Chem Res 36(5):1552–1558. doi:10.1021/ie960250h

    Article  Google Scholar 

  15. Knežević D, van Swaaij WPM, Kersten SRA (2009) Hydrothermal conversion of biomass: I, Glucose conversion in hot compressed water. Ind Eng Chem Res 48(10):4731–4743. doi:10.1021/ie801387v

    Article  Google Scholar 

  16. Lourvanij K, Rorrer GL (1997) Reaction rates for the partial dehydration of glucose to organic acids in solid-acid, molecular-sieving catalyst powders. J Chem Technol Biotechnol 69(1):35–44. doi:10.1002/(sici)1097-4660(199705)69:1<35::aid-jctb685>3.0.co;2[-‐]9

  17. Girisuta B, Janssen LPBM, Heeres HJ (2006) A kinetic study on the decomposition of 5-hydroxymethylfurfural into levulinic acid. Green Chem 8(8):701–709

    Article  Google Scholar 

  18. Horvat J, Klaic B, Metelko B, Sunjic V (1985) Mechanism of levulinic acid formation. Tetrahedron Lett 26(17):2111–2114

    Article  Google Scholar 

  19. Horvat J, Klaic B, Metelko B, Sunjic V (1986) Mechanism of levulinic acid formation in acid catalyzed hydrolysis of 2-(hydroxymethyl)furan and 5-(hydroxymethyl)-2-furancarboxaldehyde. Croat Chem Acta 59(2):429–438

    Google Scholar 

  20. Sun X, Li Y (2004) Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew Chem Int Ed 43(5):597–601

    Article  Google Scholar 

  21. Titirici M-M, Antonietti M, Baccile N (2008) Hydrothermal carbon from biomass: a comparison of the local structure from poly- to monosaccharides and pentoses/hexoses. Green Chem 10(11):1204–1212

    Article  Google Scholar 

  22. Yao C, Shin Y, Wang L-Q, Windisch C, Samuels W, Arey B, Wang C, Risen W, Exarhos G (2007) Hydrothermal dehydration of aqueous fructose solutions in a closed system. J Phys Chem C 111(42):15141–15145

    Article  Google Scholar 

  23. Patil SKR, Lund CRF (2011) Formation and growth of humins via aldol addition and condensation during acid-catalyzed conversion of 5-hydroxymethylfurfural. Energy Fuel 25(10):4745–4755. doi:10.1021/ef2010157

    Article  Google Scholar 

  24. Patil SKR, Heltzel J, Lund CRF (2012) Comparison of structural features of humins formed catalytically from glucose, fructose, and 5-hydroxymethylfurfuraldehyde. Energy Fuel 26(8):5281–5293. doi:10.1021/Ef3007454

    Article  Google Scholar 

  25. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JJ, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14(11):1347

    Article  Google Scholar 

  26. Curtiss LA, Raghavachari K, Redfern PC, Baboul AG, Pople JA (1999) Gaussian-3 theory using coupled cluster energies. Chem Phys Lett 314:101–107. doi:10.1016/s0009-2614(99)01126-4

    Article  Google Scholar 

  27. Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) Gaussian-3 (G3) theory for molecules containing first and second-row atoms. J Chem Phys 109:7764–7776. doi:10.1063/1.477422

    Article  Google Scholar 

  28. Curtiss LA, Redfern PC, Raghavachari K, Rassolov V, Pople JA (1999) Gaussian-3 theory using reduced Moller-Plesset order. J Chem Phys 110:4703–4709. doi:10.1063/1.478385

    Article  Google Scholar 

  29. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396. doi:10.1021/jp810292n

    Article  Google Scholar 

  30. Verevkin SP, Emel’yanenko VN (2012) Renewable platform-chemicals and materials: thermochemical study of levulinic acid. J Chem Thermodyn 46:94–98. doi:10.1016/j.jct.2011.07.014

    Article  Google Scholar 

Download references

Acknowledgments

The use of the supercomputer facilities at the Center for Computational Research at the University at Buffalo, SUNY, is gratefully acknowledged.

Author information Authors and Affiliations
  1. Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY, 14260, USA

    Jacob Heltzel & Carl R. F. Lund

  2. Advanced Module Engineering, Globalfoundries, 400 Stone Break Extension, Malta, NY, 12020, USA

    Sushil K. R. Patil

Authors
  1. Jacob Heltzel
  2. Sushil K. R. Patil
  3. Carl R. F. Lund
Corresponding author

Correspondence to Carl R. F. Lund .

Editor information Editors and Affiliations
  1. The Guelph-Waterloo-Centre for Graduate Work in Chemistry (GWC)2, Department of Chemistry, University of Guelph, Guelph, Ontario, Canada

    Marcel Schlaf

  2. Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Dalian, China

    Z. Conrad Zhang

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter Cite this chapter

Heltzel, J., Patil, S.K.R., Lund, C.R.F. (2016). Humin Formation Pathways. In: Schlaf, M., Zhang, Z. (eds) Reaction Pathways and Mechanisms in Thermocatalytic Biomass Conversion II. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-287-769-7_5

Download citation

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4