Humins are undesired solids that form during the aqueous processing of cellulose-derived carbohydrates. Aldol addition/condensation involving intermediates with multiple keto groups is one mechanistic pathway by which humins can form. The Gibbs free energy changes for aldol addition/condensation reactions in the early stages of humin formation have been computed from first principles. On this basis, primary humin building blocks have been identified. The effect of the initial carbohydrate upon the structure of the humins formed, as characterized by infrared spectroscopy, can be rationalized in terms of these building blocks.
This is a preview of subscription content, log in via an institution to check access.
Similar content being viewed by others ReferencesFarrell AE (2006) Ethanol can contribute to energy and environmental goals. Science 311(5760):506–508. doi:10.1126/science.1121416
Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59(6):618–628
Hayes DJ (2009) An examination of biorefining processes, catalysts and challenges. Catal Today 145(1–2):138–151
Mascal M, Nikitin EB (2008) Direct, high-yield conversion of cellulose into biofuel. Angew Chem Int Ed 47(41):7924–7926
Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106(9):4044–4098
Girisuta B, Janssen LPBM, Heeres HJ (2007) Kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid. Ind Eng Chem Res 46(6):1696–1708
Sasaki M, Kabyemela B, Malaluan R, Hirose S, Takeda N, Adschiri T, Arai K (1998) Cellulose hydrolysis in subcritical and supercritical water. J Supercrit Fluids 13(1–3):261–268
Alauddin ZABZ, Lahijani P, Mohammadi M, Mohamed AR (2010) Gasification of lignocellulosic biomass in fluidized beds for renewable energy development: a review. Renew Sust Energ Rev 14(9):2852–2862. doi:10.1016/j.rser.2010.07.026
Bulushev DA, Ross JRH (2011) Catalysis for conversion of biomass to fuels via pyrolysis and gasification: a review. Catal Today 171(1):1–13
Vamvuka D (2011) Bio-oil, solid and gaseous biofuels from biomass pyrolysis processes-an overview. Int J Energy Res 35(10):835–862
Baugh KD, McCarty PL (1988) Thermochemical pretreatment of lignocellulose to enhance methane fermentation: I. Monosaccharide and furfurals hydrothermal decomposition and product formation rates. Biotechnol Bioeng 31(1):50–61
Chang C, Ma X, Cen P (2009) Kinetic studies on wheat straw hydrolysis to levulinic acid. Chin J Chem Eng 17(5):835–839
Girisuta B, Janssen L, Heeres H (2006) A kinetic study on the conversion of glucose to levulinic acid. Chem Eng Res Des 84(A5):339–349. doi:10.1205/cherd05038
Kabyemela BM, Adschiri T, Malaluan RM, Arai K (1997) Kinetics of glucose epimerization and decomposition in subcritical and supercritical water. Ind Eng Chem Res 36(5):1552–1558. doi:10.1021/ie960250h
Knežević D, van Swaaij WPM, Kersten SRA (2009) Hydrothermal conversion of biomass: I, Glucose conversion in hot compressed water. Ind Eng Chem Res 48(10):4731–4743. doi:10.1021/ie801387v
Lourvanij K, Rorrer GL (1997) Reaction rates for the partial dehydration of glucose to organic acids in solid-acid, molecular-sieving catalyst powders. J Chem Technol Biotechnol 69(1):35–44. doi:10.1002/(sici)1097-4660(199705)69:1<35::aid-jctb685>3.0.co;2[-‐]9
Girisuta B, Janssen LPBM, Heeres HJ (2006) A kinetic study on the decomposition of 5-hydroxymethylfurfural into levulinic acid. Green Chem 8(8):701–709
Horvat J, Klaic B, Metelko B, Sunjic V (1985) Mechanism of levulinic acid formation. Tetrahedron Lett 26(17):2111–2114
Horvat J, Klaic B, Metelko B, Sunjic V (1986) Mechanism of levulinic acid formation in acid catalyzed hydrolysis of 2-(hydroxymethyl)furan and 5-(hydroxymethyl)-2-furancarboxaldehyde. Croat Chem Acta 59(2):429–438
Sun X, Li Y (2004) Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew Chem Int Ed 43(5):597–601
Titirici M-M, Antonietti M, Baccile N (2008) Hydrothermal carbon from biomass: a comparison of the local structure from poly- to monosaccharides and pentoses/hexoses. Green Chem 10(11):1204–1212
Yao C, Shin Y, Wang L-Q, Windisch C, Samuels W, Arey B, Wang C, Risen W, Exarhos G (2007) Hydrothermal dehydration of aqueous fructose solutions in a closed system. J Phys Chem C 111(42):15141–15145
Patil SKR, Lund CRF (2011) Formation and growth of humins via aldol addition and condensation during acid-catalyzed conversion of 5-hydroxymethylfurfural. Energy Fuel 25(10):4745–4755. doi:10.1021/ef2010157
Patil SKR, Heltzel J, Lund CRF (2012) Comparison of structural features of humins formed catalytically from glucose, fructose, and 5-hydroxymethylfurfuraldehyde. Energy Fuel 26(8):5281–5293. doi:10.1021/Ef3007454
Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JJ, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14(11):1347
Curtiss LA, Raghavachari K, Redfern PC, Baboul AG, Pople JA (1999) Gaussian-3 theory using coupled cluster energies. Chem Phys Lett 314:101–107. doi:10.1016/s0009-2614(99)01126-4
Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) Gaussian-3 (G3) theory for molecules containing first and second-row atoms. J Chem Phys 109:7764–7776. doi:10.1063/1.477422
Curtiss LA, Redfern PC, Raghavachari K, Rassolov V, Pople JA (1999) Gaussian-3 theory using reduced Moller-Plesset order. J Chem Phys 110:4703–4709. doi:10.1063/1.478385
Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396. doi:10.1021/jp810292n
Verevkin SP, Emel’yanenko VN (2012) Renewable platform-chemicals and materials: thermochemical study of levulinic acid. J Chem Thermodyn 46:94–98. doi:10.1016/j.jct.2011.07.014
The use of the supercomputer facilities at the Center for Computational Research at the University at Buffalo, SUNY, is gratefully acknowledged.
Author information Authors and AffiliationsDepartment of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY, 14260, USA
Jacob Heltzel & Carl R. F. Lund
Advanced Module Engineering, Globalfoundries, 400 Stone Break Extension, Malta, NY, 12020, USA
Sushil K. R. Patil
Correspondence to Carl R. F. Lund .
Editor information Editors and AffiliationsThe Guelph-Waterloo-Centre for Graduate Work in Chemistry (GWC)2, Department of Chemistry, University of Guelph, Guelph, Ontario, Canada
Marcel Schlaf
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Dalian, China
Z. Conrad Zhang
© 2016 Springer Science+Business Media Singapore
About this chapter Cite this chapterHeltzel, J., Patil, S.K.R., Lund, C.R.F. (2016). Humin Formation Pathways. In: Schlaf, M., Zhang, Z. (eds) Reaction Pathways and Mechanisms in Thermocatalytic Biomass Conversion II. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-287-769-7_5
Download citationDOI: https://doi.org/10.1007/978-981-287-769-7_5
Publisher Name: Springer, Singapore
Print ISBN: 978-981-287-768-0
Online ISBN: 978-981-287-769-7
eBook Packages: EnergyEnergy (R0)
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4