A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://doi.org/10.1007/978-981-10-0606-7_1 below:

Energy Efficiency of Metallic Powder Bed Additive Manufacturing Processes

  • Kruth J-P, Leu MC, Nakagawa T (1998) Progress in Additive manufacturing and rapid prototyping. CIRP Ann Manufact Technol 47(2):525–540

    Article  Google Scholar 

  • Wohlers (2013) Wohlers Report: additive manufacturing and 3D printing state of the industry. Wohlers Associates, USA

    Google Scholar 

  • RAEng (2013) Additive manufacturing: opportunities and constraints. Royal Academy of Engineering, UK

    Google Scholar 

  • Levy GN, Schindel R, Kruth JP (2003) Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives. CIRP Ann Manuf Technol 52(2):589–609

    Article  Google Scholar 

  • Levy GN, Schindel R, Kruth JP (2003) Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives. CIRP Ann Manuf Technol 52(2):589–609

    Article  Google Scholar 

  • Santos EC, Shiomi M, Osakada K, Laoui T (2006) Rapid manufacturing of metal components by laser forming. Int J Mach Tool Manuf 46(12–13):1459–1468

    Google Scholar 

  • Gu DD, Meiners W, Wissenbach K, Poprawe R (2012) Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev 57(3):133–164

    Article  CAS  Google Scholar 

  • Leuders S, Thöne M, Riemer A, Niendorf T, Tröster T, Richard HA, Maier HJ (2013) On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance. Int J Fatigue 448:300–307

    Article  Google Scholar 

  • Kruth JP, Levy G, Klocke F, Childs THC (2007) Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann Manuf Technol 56(2):730–759

    Article  Google Scholar 

  • Gu D, Wang H, Zhang G (2014) Selective laser melting additive manufacturing of Ti-based nanocomposites: the role of nanopowder. Metall Mater Trans A 45(1):464–476

    Article  CAS  Google Scholar 

  • Schoinochoritis B, Chantzis D, Salonitis K (2015) Simulation of metallic powder bed additive manufacturing processes with the finite element method: a critical review. Proc Instit Mech Eng Part B J Eng Manuf. doi: 10.1177/0954405414567522

    Google Scholar 

  • IEA (2007) Tracking industrial energy efficiency and CO2 emission

    Google Scholar 

  • Brundtland GH (1987) Our common future. Oxford University Press, Oxford

    Google Scholar 

  • Mani M, Lyons KW, Gupta SK (2014) Sustainability characterization for additive manufacturing. J Res National Inst Stand Technol 119:419–428

    Article  Google Scholar 

  • Ellen McArthour Foundation (2015) Accessible at http://www.ellenmacarthurfoundation.org/. Accessed on 20 Nov 2015

  • Salonitis K, Stavropoulos P (2013) On the integration of the CAx systems towards sustainable production. Procedia CIRP, vol 9, pp 115–120. doi:10.1016/j.procir.2013.06.178

    Google Scholar 

  • Gebler M, SchootUiterkamp AJM, Visser C (2014) A global sustainability perspective on 3D printing technologies. Energy Policy 74(C):158–167

    Google Scholar 

  • Despeisse M, Ford S (2015) The role of additive manufacturing in improving resource efficiency and sustainability. In: Proceedings of the APMS 2015 international conference

    Google Scholar 

  • Chen D, Heyer S, Ibbotson S, Salonitis K, GarðarSteingrímsson J, Thiede S (2015) Direct digital manufacturing: definition, evolution, and sustainability implications. J Cleaner Prod 107:615–625

    Article  Google Scholar 

  • Baumers M, Tuck C, Wildman R, Ashcroft I, Rosamond E, Hague R (2012) Transparency built-in energy consumption and cost estimation for additive manufacturing. J Ind Ecol 17(3):418–431

    Article  Google Scholar 

  • Atzeni E, Salmi A (2012) Economics of additive manufacturing for end-usable metal parts. Int J Adv Manuf Technol 62(9):1147–1155

    Article  Google Scholar 

  • Sreenivasan R, Goel A, Bourell DL (2010) Sustainability issues in laser-based additive manufacturing. Phys Procedia 5:81–90

    Article  CAS  Google Scholar 

  • Serres N, Tidu D, Sankare S, Hlawka F (2011) Environmental comparison of MESO-CLAD process and conventional machining implementing life cycle assessment. J Cleaner Prod 19:1117–1124

    Article  CAS  Google Scholar 

  • Seuring S (2004) Integrated chain management and supply chain management comparative analysis and illustrative cases. J Cleaner Prod 12:1059–1071

    Article  Google Scholar 

  • Kleindorfer PR, Singhal K, Van Wassenhove LN (2005) Sustainable operations management. Prod Oper Manage 14(4):482–492

    Article  Google Scholar 

  • Linton JD, Klassen R, Jayaraman V (2007) Sustainable supply chains: an introduction. J Oper Manage 25:1075–1082

    Article  Google Scholar 

  • Bell S, Morse S (2008) Sustainability Indicators—measuring the immeasurable? ISBN-13: 978-1-84497-299-6, published by Earthscan, UK, p 223

    Google Scholar 

  • Stiglitz and Sen—Fitoussi report (2009)—Report by the commission on the measurement of economic performance and social progress (French Government Initiative)

    Google Scholar 

  • Huang SH, Liu P, Mokasdar A, Hou L (2013) Additive manufacturing and its societal impact: a literature review. Int J Adv Manuf Technol 67:1191–1203

    Article  Google Scholar 

  • Chryssolouris G (2006) Manuf Syst Theory Pract, 3rd edn. Springer-Verlag, New York

    Google Scholar 

  • Salonitis K, Ball P (2013) Energy efficient manufacturing from machine tools to manufacturing systems. Procedia CIRP 7:634–639

    Article  Google Scholar 

  • Bunse K, Vodicka M, Schönsleben P, Brülhart M, Ernst FO (2011) Integrating energy efficiency performance in production management—gap analysis between industrial needs and scientific literature. J Cleaner Prod 19:667–679

    Google Scholar 

  • Roberts IA, Wang CJ, Esterlein R et al (2009) A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing. Int J Mach Tool Manuf 49:916–923

    Article  Google Scholar 

  • Zhang J, Li D, Li J et al (2011) Numerical simulation of temperature field in selective laser sintering. In: Li D, Liu Y, Chen Y (eds) Computer and computing technologies in agriculture IV, 1st edn. Springer, New York, pp 474–479

    Chapter  Google Scholar 

  • Bai PK, Cheng J, Liu B et al (2006) Numerical simulation of temperature field during selective laser sintering of polymer-coated molybdenum powder. T Nonferr Metal Soc 16:603–607

    Article  Google Scholar 

  • Van Belle L, Vansteenkiste G, Boyer JC (2012) Comparisons of numerical modelling of the selective laser melting. Key Eng Mat 504–506:1067–1072

    Article  Google Scholar 

  • Zhang DQ, Cai QZ, Liu JH et al (2010) Select laser melting of W-Ni–Fe powders: simulation and experimental study. Int J Adv Manuf Technol 51:649–658

    Article  Google Scholar 

  • Song B, Dong S, Liao H et al (2012) Process parameter selection for selective laser melting of Ti6Al4 V based on temperature distribution simulation and experimental sintering. Int J Adv Manuf Technol 61(9–12):967–974

    Article  Google Scholar 

  • Yin J, Zhu H, Ke L et al (2012) Simulation of temperature distribution in single metallic powder layer for laser micro-sintering. Comput Mater Sci 53(1):333–339

    Article  CAS  Google Scholar 

  • Hussein A, Hao L, Yan C et al (2013) Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting. Mater Des 52:638–647

    Article  CAS  Google Scholar 

  • Patil RB, Yadava V (2007) Finite element analysis of temperature distribution in single metallic powder layer during metal laser sintering. Int J Mach Tool Manuf 47:1069–1080

    Article  Google Scholar 

  • Shen N, Chou K (2012) Thermal modeling of electron beam additive manufacturing process—powder sintering effects. In: ASME international manufacturing science and engineering conference, Notre Dame, USA, 4–8 June 2012, pp 287–295

    Google Scholar 

  • Contuzzi N, Campanelli SL, Ludovico AD (2011) 3D Finite element analysis in the selective laser melting process. Int J Simul Model 10(3):113–121

    Article  Google Scholar 

  • Matsumoto M, Shiomi M, Osakada K et al (2002) Finite element analysis of single layer forming on metallic powder bed in rapid prototyping by selective laser processing. Int J Mach Tool Manuf 42(1):61–67

    Article  Google Scholar 

  • Salonitis K, D’Alvice L, Schoinochoritis B, Chantzis D (2015) Additive manufacturing and post-processing simulation: laser cladding followed by high speed machining. Int J Adv Manuf Technol. doi:10.1007/s00170-015-7989-y

    Google Scholar 

  • Schilp J, Seidel C, Krauss H, et al. (2014) Investigations on temperature fields during laser beam melting by means of process monitoring and multiscale process modelling. Adv Mech Eng 6

    Google Scholar 

  • Ma L, Bin H (2007) Temperature and stress analysis and simulation in fractal scanning-based laser sintering. Int J Adv Manuf Technol 34(9–10):898–903

    Article  Google Scholar 

  • Mercelis P, Kruth J (2006) Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyping J 12(5):254–265

    Article  Google Scholar 

  • Bauereiß A, Scharowsky T, Körner C (2014) Defect generation and propagation mechanism during additive manufacturing by selective beam melting. J Mater Process Technol 214(11):2522–2528

    Article  Google Scholar 

  • Körner C, Bauereiß A, Attar E (2013) Fundamental consolidation mechanisms during selective beam melting of powders. Model Simul Mater Sci Eng 21(8):085011

    Google Scholar 

  • Körner C, Attar E, Heinl P (2011) Mesoscopic simulation of selective beam melting processes. J Mater Process Technol 211(6):978–987

    Article  Google Scholar 

  • Scharowsky T, Bauereiß A, Singer RF, et al. Observation and numerical simulation of melt pool dynamic and beam powder interaction during selective electron beam melting. In: National science foundation solid freeform fabrication symposium, Austin, USA, 6–8 August 2012

    Google Scholar 

  • Chen T, Zhang Y (2004) Numerical simulation of two dimensional melting and resolidification of a two-component metal powder layer in selective laser sintering process. Numer Heat Tr A-Appl 46(7):633–649

    Article  CAS  Google Scholar 

  • Dai D, Gu D (2014) Thermal behavior and densification mechanism during selective laser melting of copper matrix composites: simulation and experiments. Mater Des 55:482–491

    Article  CAS  Google Scholar 

  • Matsumoto M, Shiomi M, Osakada K et al (2002) Finite element analysis of single layer forming on metallic powder bed in rapid prototyping by selective laser processing. Int J Mach Tool Manuf u 42(1):61–67

    Article  Google Scholar 

  • Van Belle L, Vansteenkiste G, Boyer JC (2012) Comparisons of numerical modelling of the selective laser melting. Key Eng Mat 504–506:1067–1072

    Article  Google Scholar 

  • Bai PK, Cheng J, Liu B et al (2006) Numerical simulation of temperature field during selective laser sintering of polymer-coated molybdenum powder. T Nonferr Metal Soc 16:603–607

    Article  Google Scholar 

  • Childs THC, Hauser C, Taylor CM, et al. (2000) Simulation and experimental verification of crystalline polymer and direct metal Selective Laser Sintering. In: National science foundation solid freeform fabrication symposium, Austin, USA, 7–9 August 2000

    Google Scholar 

  • Kolossov S, Boillat E, Glardon R et al (2004) 3D FE simulation for temperature evolution in the selective laser sintering process. Int J Mach Tool Manuf 44:117–123

    Article  Google Scholar 

  • Contuzzi N, Campanelli SL, Ludovico AD (2011) 3D Finite element analysis in the selective laser melting process. IJSIMM 10(3):113–121

    Google Scholar 

  • Riedlbauer D, Steinmann P, Mergheim J (2014) Thermomechanical finite element simulations of selective electron beam melting processes: performance considerations. Comput Mech 54(1):109–122

    Article  Google Scholar 

  • Denlinger ER, Heigel JC, Michaleris P (2014) Residual stress and distortion modeling of electron beam direct manufacturing Ti-6Al-4 V. Proc Inst Mech Eng Part B J Eng Manuf. doi: 10.1177/0954405414539494

    Google Scholar 

  • Liu FR, Zhang Q, Zhou WP et al (2012) Micro scale 3D FEM simulation on thermal evolution within the porous structure in selective laser sintering. J Mater Process Tech 212(10):2058–2065

    Article  Google Scholar 

  • Schilp J, Seidel C, Krauss H, et al. (2014) Investigations on temperature fields during laser beam melting by means of process monitoring and multiscale process modelling. Adv Mech Eng 6

    Google Scholar 

  • Duflou JR, Sutherland JW, Dornfield S, Herrmann C, Jeswiet J, Kara S, Hauschild M, Kellens K (2012) Towards energy and resource efficient manufacturing: a processes and systems approach. CIRP Ann Manuf Technol 61:587–609

    Google Scholar 

  • Vijayaraghavan A, Dornfeld D (2010) Automated energy monitoring of machine tools. CIRP Ann Manuf Technol 59:21–24

    Article  Google Scholar 

  • Behrendt T, Zeina A, Min S (2012) Development of an energy consumption monitoring procedure for machine tools. CIRP Ann Manuf Technol 61:43–46

    Article  Google Scholar 

  • Oda Y, Mori M, Ogawa K, Nishida S, Fujishima M, Kawamura T (2012) Study of optimal cutting condition for energy efficiency improvement in ball end milling with tool-workpiece inclination. CIRP Ann Manuf Technol 61:119–122

    Article  Google Scholar 

  • Hao L, Raymond D, Strano G, Dadbakhsh S (2010) Enhancing the sustainability of additive manufacturing. In: ICRM2010-Green Manufacturing, Ningbo, China, pp 390–395

    Google Scholar 

  • Kara S, Li W (2011) Unit process energy consumption models for material removal processes. CIRP Ann Manuf Technol 60:37–40

    Google Scholar 

  • Weinert N, Chiotellis S, Seliger G (2011) Methodology for planning and operating energy-efficient production systems. CIRP Ann Manuf Technol 60:41–44

    Article  Google Scholar 

  • Dahmus J, Gutowski T (2004) An environmental analysis of machining. In: Proceedings of ASME international mechanical engineering congress and R&D exposition, pp 13–19

    Google Scholar 

  • Salonitis Κ (2012) Efficient grinding processes: an energy efficiency point of view. In: Proceedings of the 10th international conference on manufacturing research (ICMR 2012), pp 541–546

    Google Scholar 

  • Salonitis K (2015) Energy efficiency assessment of grinding strategy. Int J Energy Sect Manage 9(1):20–37

    Article  Google Scholar 

  • Kempen K, Thijs L, Vrancken B, Van Humbeeck J, Kruth JP (2013) Producing crack-free, high density M2 Hss parts by selective laser melting: pre-heating the baseplate. In: Proceedings of the 24th international solid freeform fabrication symposium. Laboratory for freeform fabrication, Austin, TX, pp 131–139

    Google Scholar 

  • Sreenivasan R, Goel A, Bourell DL (2010) Sustainability issues in laser-based additive manufacturing. Phys Procedia 5:81–90. doi:10.1016/j.phpro.2010.08.124

    Article  CAS  Google Scholar 

  • Reinhardt T, Witt G (2012) Experimental analysis of the laser-sintering process from an energetic point of view. Ann. DAAAM 2012 Proc. 23rd Int. DAAAM Symp 23:405–408

    Google Scholar 

  • Baumers M, Tuck C, Bourell DL, Sreenivasan R, Hague R (2011) Sustainability of additive manufacturing: measuring the energy consumption of the laser sintering process. Proc Inst Mech Eng Part B J Eng Manuf 225:2228–2239

    Article  Google Scholar 

  • Meteyer S, Xu X, Perry N, Zhao YF (2014) Energy and material flow analysis of binder-jetting additive manufacturing processes. Procedia CIRP 15:19–25. doi:10.1016/j.procir.2014.06.030

    Article  Google Scholar 

  • Morrow WR, Qi H, Kim I, Mazumder J, Skerlos SJ (2007) Environmental aspects of laser-based and conventional tool and die manufacturing. J Cleaner Prod 15:932–943

    Article  Google Scholar 

  • Paul R, Anand S (2012) Process energy analysis and optimization in selective laser sintering. J Manuf Syst 31:429–437

    Article  Google Scholar 

  • Verma A, Rai R (2013) Energy efficient modeling and optimization of additive manufacturing processes. In: Proceedings of the 24th international solid freeform fabrication symposium. Laboratory for Freeform Fabrication, Austin, TX, pp 231–241

    Google Scholar 

  • Strano G, Hao L, Everson RM, Evans KE (2011) Multi-objective optimization of selective laser sintering processes for surface quality and energy saving. Proc Inst Mech Eng Part B J Eng Manuf 225:1673–1682

    Article  Google Scholar 

  • Gutowski T, Dahmus J, Thiriez A (2006) Electrical energy requirements for manufacturing processes. In 13th CIRP international conference on life cycle engineering

    Google Scholar 

  • Renaldi R, Dewulf W, Kruth J, Duflou JR (2014) Environmental impact modeling of selective laser sintering processes. Rapid Prototyping J 20:459–470. doi:10.1108/RPJ-02-2013-0018

    Article  Google Scholar 

  • Papadakis L, Schoinochoritis B, Chantzis D, Doukas C, Salonitis K (2015) On the energy efficiency of pre-heating methods in SLM/SLS processes. Working paper to be submitted for publication

    Google Scholar 

  • Salonitis K (2015) Grind-hardening process. SpringerBrief, New York. doi: 10.1007/978-3-319-19372-4

    Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4