A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://doi.org/10.1007/978-3-642-12821-9_2 below:

Physics, Topology, Logic and Computation: A Rosetta Stone

References
  1. Abelson, H., Sussman, G.J., Sussman, J.: Structure and Interpretation of Computer Programs, MIT Press, Cambridge (1996). Available at http://mitpress.mit.edu/sicp/

    MATH  Google Scholar 

  2. Abramsky, S.: Abstract scalars, loops, and free traced and strongly compact closed categories. In: Proceedings of CALCO 2005, Lecture Notes in Computer Science 3629, Springer, Berlin, 2005, 1–31. Also available at http://web.comlab.ox.ac.uk/ oucl/work/samson.abramsky/calco05.pdf

  3. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. Available at arXiv:quant-ph/0402130

    Google Scholar 

  4. Abramsky, S., Duncan, R.: A categorical quantum logic, to appear in Mathematical Structures in Computer Science (2006). Also available as arXiv:quant-ph/0512114

    Google Scholar 

  5. Abramsky, S., Haghverdi, E., Scott, P.: Geometry of interaction and linear combinatory algebras, Math. Struct. Comput. Sci. 12, 625–665 (2002). Also available at http://citeseer.ist.psu.edu/491623.html

    Article  MathSciNet  MATH  Google Scholar 

  6. Abramsky, S., Tzevelokos, N.: Introduction to categories and categorical logic, in this volume. Also available at http://web.comlab.ox.ac.uk/people/Bob.Coecke/AbrNikos.pdf

  7. Ambler, S.: First order logic in symmetric monoidal closed categories, Ph.D. thesis, U. of Edinburgh, 1991. Available at http://www.lfcs.inf.ed.ac.uk/reports/92/ECS-LFCS-92–194/

    Google Scholar 

  8. Atiyah, M.F.: Topological quantum field theories. Publ. Math. IHES Paris 68, 175–186 (1989).

    Google Scholar 

  9. Atiyah, M.F.: The Geometry and Physics of Knots. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  10. Baez, J.: An introduction to spin foam models of quantum gravity and BF theory. In: Gausterer, H., Grosse, H. (eds.) Geometry and Quantum Physics, pp. 25–93. Springer, Berlin (2000). Also available at arXiv:gr-qc/9905087

    Chapter  Google Scholar 

  11. Baez, J.: Higher-dimensional algebra and Planck-scale physics. In: Callender, C., Huggett, N. (eds.) Physics Meets Philosophy at the Planck Length, pp. 177–195. Cambridge University Press, Cambridge (2001). Also available as arXiv:gr-qc/9902017

    Chapter  Google Scholar 

  12. Baez, J.: Quantum quandaries: A category-theoretic perspective. In: French, S., Rickles, D., Saatsi, J. (eds.) Structural Foundations of Quantum Gravity, pp. 240–265. Oxford University Press, Oxford (2006). Also available as arXiv:quant-ph/0404040

    Chapter  Google Scholar 

  13. Baez, J.: Classical versus quantum computation, U. C. Riverside seminar notes by D. Wise. Available at http://math.ucr.edu/home/baez/qg-fall2006/ and http://math.ucr.edu/home/baez/qg-winter2007

  14. Baez, J., Dolan, J.: Higher-dimensional algebra and topological quantum field theory. J. Math. Phys. 36, 6073–6105 (1995). Also available as arXiv:q-alg/9503002

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Baez, J., Langford, L.: Higher-dimensional algebra IV: 2-tangles. Adv. Math. 180, 705–764 (2003). Also available as arXiv:q-alg/9703033

    Article  MathSciNet  MATH  Google Scholar 

  16. Baez, J., Lauda, A.: A prehistory of n-categorical physics. In: Hans Halvorson (ed.) To Appear in Proceedings of Deep Beauty: Mathematical Innovation and the Search for an Underlying Intelligibility of the Quantum World, Princeton, October 3, 2007. Also available at http://math.ucr.edu/home/baez/history.pdf

  17. Bakalov, B., Kirillov, A., Jr.: Lectures on Tensor Categories and Modular Functors, American Mathematical Society, Providence, Rhode Island, 2001. Preliminary version available at http://www.math.sunysb.edu/_kirillov/tensor/tensor.html

    MATH  Google Scholar 

  18. Barendregt, H.: The Lambda Calculus, Its Syntax and Semantics. North-Holland, Amsterdam (1984)

    MATH  Google Scholar 

  19. Barr, M., Wells, C.: Toposes, Triples and Theories. Springer, Berlin (1983). Revised and corrected version available at http://www.cwru.edu/artsci/math/wells/pub/ttt.html

    Google Scholar 

  20. Bell, J.S.: On the Einstein-Podolsky-Rosen paradox, Physics 1, 195–200 (1964)

    Google Scholar 

  21. Bell, J.L.: The Development of Categorical Logic. Available at http://publish.uwo.ca/_jbell/catlogprime.pdf

  22. Benton, N., Bierman, G.M., de Paiva, V., Hyland, J.M.E.: Linear lambda-calculus and categorical models revisited, in Computer Science Logic (CSL’92), Selected Papers, Lecture Notes in Computer Science 702, pp. 61–84. Springer, Berlin (1992). Also available at http://citeseer.ist.psu.edu/benton92linear.html

    Google Scholar 

  23. Benton, N., Bierman, G., de Paiva, V., Hyland, M.: Term Assignment for Intuitionistic Linear Logic, Technical Report 262, University of Cambridge Computer Laboratory, August 1992. Also available at http://citeseer.ist.psu.edu/1273.html

  24. Bierman, G.: On Intuitionistic Linear Logic, PhD Thesis, Cambridge University. Available at http://research.microsoft.com/_gmb/Papers/thesis.pdf

  25. Blute, R., Scott, P.: Category theory for linear logicians. In: Ehrhard, T., Girard, J.-Y., Ruet, P., Scott, P. (eds.) Linear Logic in Computer Science, pp. 3–64. Cambridge University Press, Cambridge (2004). Also available at http://www.site.uottawa.ca/_phil/ papers/catsurv.web.pdf

    Chapter  Google Scholar 

  26. Burris, S.N., Sankappanavar, H.P.: A Course in Universal Algebra. Springer, Berlin (1981). Also available at http://www.math.uwaterloo.ca/_snburris/htdocs/ualg.html

    Book  MATH  Google Scholar 

  27. Chari, V., Pressley, A.: A Guide to Quantum Groups. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  28. Cheng, E., Lauda, A.: Higher-Dimensional Categories: An Illustrated Guidebook. Available at http://www.dpmms.cam.ac.uk/_elgc2/guidebook/

  29. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  30. Church, A.: An unsolvable problem of elementary number theory. Am. J. Math. 58, 345–363 (1936)

    Article  MathSciNet  Google Scholar 

  31. Coecke, B.: De-linearizing linearity: projective quantum axiomatics from strong compact closure. In: Proceedings of the 3rd International Workshop on Quantum Programming Languages (QPL 2005), pp. 49–72. Elsevier (2007). Also available as arXiv:quantph/0506134

    Google Scholar 

  32. Coecke, B.: Kindergarten quantum mechanics. To appear in Proceedings of QTRF-III. Also available as arXiv:quant-ph/0510032

    Google Scholar 

  33. Coecke, B., Paquette, E.O.: POVMs and Naimark’s theorem without sums. To appear in Proceedings of the 4th International Workshop on Quantum Programming Languages (QPL 2006). Also available as arXiv:quant-ph/0608072

    Google Scholar 

  34. Coecke, B., Pavlovic, D.: Quantum measurements without sums. In: Chen, G., Kauffman, L., Lomonaco, S. (eds.) To appear in the Mathematics of Quantum Computation and Technology. Taylor and Francis. Also available as arXiv:quant-ph/0608035

    Google Scholar 

  35. Crole, R.L.: Categories for Types. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  36. Curry, H.B., Feys, R.: Combinatory Logic, vol. I. North-Holland, Amsterdam (1958)

    Google Scholar 

  37. Curry, H.B., Findley, J.R., Selding, J.P.: Combinatory Logic, vol. II. North-Holland, Amsterdam (1972)

    MATH  Google Scholar 

  38. Cvitanovic, P.: Group Theory. Princeton University Press, Princeton (2003). Available at http://www.nbi.dk/GroupTheory/

    Google Scholar 

  39. Di Cosmo, R., Miller, D.: Linear logic, Stanford Encyclopedia of Philosophy. Available at http://plato.stanford.edu/entries/logic-linear/

  40. Dorca, M., van Tonder, A.: Quantum computation, categorical semantics and linear logic. Available as arXiv:quant-ph/0312174

    Google Scholar 

  41. Eilenberg, S., Kelly, G.M.: Closed categories. In: Proceedings of the Conference on Categorical Algebra (La Jolla, 1965), pp. 421–562. Springer, Berlin (1966)

    Chapter  Google Scholar 

  42. Eilenberg, S., Mac Lane, S.: General theory of natural equivalences. Trans. Am. Math. Soc. 58, 231–294 (1945)

    MathSciNet  MATH  Google Scholar 

  43. Freedman, M., Kitaev, A., Larsen, M., Wang, Z.: Topological quantum computation. Available as arXiv:quant-ph/0101025

    Google Scholar 

  44. Freedman, M., Kitaev, A., Wang, Z.: Simulation of topological field theories by quantum computers. Commun. Math. Phys. 227, 587–603 (2002). Also available as arXiv:quantph/0001071

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. Freedman, M., Kitaev, A., Wang, Z.: A modular functor which is universal for quantum computation. Commun. Math. Phys. 227, 605–622 (2002). Also available as arXiv:quantph/0001108

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. Freyd, P., Yetter, D.: Braided compact monoidal categories with applications to low dimensional topology. Adv. Math. 77, 156–182 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  47. Girard, J.-Y.: Linear logic. Theor. Comp. Sci. 50, 1–102 (1987). Also available at http://iml.univ-mrs.fr/ girard/linear.pdf

    Article  MathSciNet  MATH  Google Scholar 

  48. Girard, J.-Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge University Press, Cambridge (1990). Also available at http://www.monad.me.uk/stable/Proofs&2BTypes.html

    Google Scholar 

  49. Gödel, K.: Zur intuitionistischen Arithmetik und Zahlentheorie. Ergebnisse eines mathematischen Kolloquiums 4, 34–38 (1933)

    Google Scholar 

  50. Goldblatt, R.: Topoi: The Categorial Analysis of Logic. North-Holland, New York (1984). Also available at http://cdl.library.cornell.edu/cgi-bin/cul.math/docviewer?did=Gold010

    MATH  Google Scholar 

  51. Gottesman, D., Chuang, I.L.: Quantum teleportation is a universal computational primitive. Nature 402, 390–393 (1999). Also available as arXiv:quant-ph/9908010

    Article  ADS  Google Scholar 

  52. Hasegawa, M.: Logical predicates for intuitionistic linear type theories. In: Girard, J.-Y. (ed.) Typed Lambda Calculi and Applications: 4th International Conference, TLCA ’99. Lecture Notes in Computer Science 1581. Springer, Berlin (1999). Also available at http://citeseer.ist.psu.edu/187161.html

    Google Scholar 

  53. Heyting, A., Brouwer, L.E.J. (ed.): Collected Works 1: Philosophy and Foundations of Mathematics. Elsevier, Amsterdam (1975)

    MATH  Google Scholar 

  54. Hilken, B.: Towards a proof theory of rewriting: The simply-typed 2*-calculus. Theor. Comput. Sci. 170, 407–444 (1996)

    MathSciNet  MATH  Google Scholar 

  55. Hindley, J.R., Seldin, J.P.: Lambda-Calculus and Combinators: An Introduction. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  56. Howard, W.A.: The formulae-as-types notion of constructions. In: Seldin, J.P., Hindley, J.R. (eds.) To Curry, H.B.: Essays on Combinatory Logic, Lambda Calculus and Formalism, pp. 479–490. Academic Press, New York (1980)

    Google Scholar 

  57. Jay, C.B.: Languages for monoidal categories. J. Pure Appl. Alg. 59, 61–85 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  58. Jay, C.B.: The structure of free closed categories. J. Pure Appl. Alg. 66, 271–285 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  59. Joyal, A., Street, R.: The geometry of tensor calculus I. Adv. Math. 88, 55–113 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  60. Joyal, A., Street, R.: The geometry of tensor calculus II. Available at http://www.math.mq.edu.au/ street/GTCII.pdf

  61. Joyal, A., Street, R.: Braided monoidal categories, Macquarie Math Reports 860081 (1986). Available at http://rutherglen.ics.mq.edu.au/_street/JS86.pdf

  62. Joyal, A., Street, R.: Braided tensor categories. Adv. Math. 102, 20–78 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  63. Kaiser, D.: Drawing Theories Apart: The Dispersion of Feynman Diagrams in Postwar Physics. University of Chicago Press, Chicago (2005)

    Book  MATH  Google Scholar 

  64. Kassel, C.: Quantum Groups. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  65. Kauffman, L.H.: Knots and Physics. World Scientific, Singapore (1991)

    MATH  Google Scholar 

  66. Kauffman, L.H., Lins, S.: Temperley–Lieb Recoupling Theory and Invariants of 3-Manifolds. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  67. Kelly, G.M., Mac Lane, S.: Coherence in closed categories. J. Pure Appl. Alg. 1, 97–140, 219 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  68. Kelly, G.M., Laplaza, M.L.: Coherence for compact closed categories. J. Pure Appl. Alg. 19, 193–213 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  69. Kleene, S.: *-definability and recursiveness. Duke Math. J. 2, 340–353 (1936)

    Article  MathSciNet  Google Scholar 

  70. Kock, J.: Frobenius Algebras and 2D Topological Quantum Field Theories, London Mathematical Society Student Texts 59. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  71. Kohno, T. (ed.): New Developments in the Theory of Knots. World Scientific, Singapore (1990)

    MATH  Google Scholar 

  72. Lambek, J.: From *-calculus to cartesian closed categories. In: Seldin, J.P., Hindley, J.R. (eds.) To Curry, H.B.: Essays on Combinatory Logic, Lambda Calculus and Formalism, pp. 375–402. Academic Press, New York (1980)

    Google Scholar 

  73. Lambek, J., Scott, P.J.: Introduction to Higher-order Categorical Logic. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  74. Landin, P.: A correspondence between ALGOL 60 and Church’s lambda-notation. Commun. ACM 8, 89–101, 158–165 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  75. Lawvere, F.W.: Functorial Semantics of Algebraic Theories, Ph.D. Dissertation, Columbia University (1963). Also available at http://www.tac.mta.ca/tac/reprints/articles/5/tr5abs.html

  76. Leinster, T.: A survey of definitions of n-category. Theor. Appl. Cat. 10, 1–70 (2002). Also available as arXiv:math/0107188

    MathSciNet  MATH  Google Scholar 

  77. Mac Lane, S.: Natural associativity and commutativity. Rice Univ. Stud. 49 28–46 (1963)

    MathSciNet  Google Scholar 

  78. Mac Lane, S.: Categories for the Working Mathematician. Springer, Berlin (1998)

    MATH  Google Scholar 

  79. Melliès, P.: Axiomatic rewriting theory I: A diagrammatic standardisation theorem. In: Processes, Terms and Cycles: Steps on the Road to Infinity, Lecture Notes in Computer Science 3838, pp. 554–638. Springer, New York (2005). Also available at http://www.pps.jussieu.fr/ mellies/papers/jwkfestschrift.pdf

  80. McCarthy, J.: Recursive functions of symbolic expressions and their computation by machine, Part I. Comm. ACM 4, 184–195 (1960). Also available at http://wwwformal.stanford.edu/jmc/recursive.html

    Article  Google Scholar 

  81. McLarty, C.: Elementary Categories, Elementary Toposes. Clarendon Press, Oxford (1995)

    MATH  Google Scholar 

  82. Moore, G., Read, N.: Nonabelions in the fractional quantum Hall effect. Nucl. Phys. B 360, 362–396 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  83. Moschovakis, J.: Intuitionistic logic, Stanford Encyclopedia of Philosophy. Available at http://plato.stanford.edu/entries/logic-intuitionistic/

  84. Penrose, R.: Applications of negative dimensional tensors. In: Welsh, D. (ed.) Combinatorial Mathematics and Its Applications, pp. 221–244. Academic Press, New York (1971)

    Google Scholar 

  85. Penrose, R.: Angular momentum: An approach to combinatorial space-time. In: Bastin, T. (ed.) Quantum Theory and Beyond, pp. 151–180. Cambridge University Press, Cambridge (1971)

    Google Scholar 

  86. Penrose, R.: On the nature of quantum geometry. In: Klauder J. (ed.) Magic Without Magic, pp. 333–354. Freeman, San Francisco (1972)

    Google Scholar 

  87. Penrose, R.: Combinatorial quantum theory and quantized directions. In: Hughston, L., Ward, R. (eds.) Advances in Twistor Theory, Pitman Advanced Publishing Program, pp. 301–317 (1979)

    Google Scholar 

  88. Rowell, E., Stong, R., Wang, Z.: On classification of modular tensor categories, available as arXiv:0712.1377

    Google Scholar 

  89. Scott, P.: Some aspects of categories in computer science. In: Hazewinkel, M. (ed.) Handbook of Algebra, vol. 2, Elsevier, Amsterdam (2000). Also available at http://www.site.uottawa.ca/ phil/papers/handbook.ps

    Google Scholar 

  90. Sawin, S.: Links, quantum groups and TQFTs. Bull. Am. Math. Soc. 33, 413–445 (1996). Also available as arXiv:q-alg/9506002

    Article  MathSciNet  MATH  Google Scholar 

  91. Schalk, A.: What is a categorical model for linear logic? Available at http://www.cs.man.ac.uk/schalk/notes/llmodel.pdf

  92. Schönfinkel, M.: Über die Bausteine der mathematischen Logik. Math. Ann. 92, 305–316 (1924). Also available as On the building blocks of mathematical logic. Trans. Bauer-Mengelberg, S.: In: van Heijenoort, J. (ed.) A Source Book in Mathematical Logic, 1879–1931, pp. 355–366. Harvard University Press, Cambridge, Massachusetts (1967)

    Article  MathSciNet  MATH  Google Scholar 

  93. Seely, R.A.G.: Weak adjointness in proof theory, Applications of Sheaves, Lecture Notes in Mathematics 753, pp. 697–701. Springer, Berlin. Also available at http://www.math.mcgill.ca/rags/WkAdj/adj.pdf

  94. Seely, R.A.G.: Modeling computations: A 2-categorical framework. In: Proceedings of the Symposium Logic Computer Science 1987, Computer Society of the IEEE, pp. 65–71. Also available at http://www.math.mcgill.ca/rags/WkAdj/LICS.pdf

  95. Segal, G.: The definition of a conformal field theory. In: Tillmann, U.L. (ed.) Topology, Geometry and Quantum Field Theory: Proceedings of the 2002 Oxford Symposium in Honour of the 60th Birthday of Graeme Segal. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  96. Selinger, P.: Lecture notes on the lambda calculus. Available at http://www.mscs.dal.ca/selinger/papers/#lambdanotes

  97. Selinger, P.: Dagger compact closed categories and completely positive maps. In: Proceedings of the 3rd International Workshop on Quantum Programming Languages (QPL 2005), pp. 139–163. Elsevier, Amsterdam (2007). Also available at http://www.mscs.dal.ca/selinger/papers/#dagger

  98. Selinger, P., Valiron, B.: A lambda calculus for quantum computation with classical control. Math. Struct. Comp. Sci. 13, 527–552 (2006). Also available at http://www.mathstat.dal.ca/selinger/papers/#qlambda

    Article  MathSciNet  Google Scholar 

  99. Shum, M.-C.: Tortile tensor categories. J. Pure Appl. Alg. 93, 57–110 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  100. Soloviev, S.: Proof of a conjecture of S. Mac Lane. Ann. Pure Appl. Logic 90, 101–162 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  101. Smolin, L.: The future of spin networks. In: Hugget, S., Tod, P., Mason, L.J. (eds.) The Geometric Universe: Science, Geometry, and the Work of Roger Penrose. Oxford University Press, Oxford (1998). Also available as arXiv:gr-qc/9702030

    Google Scholar 

  102. Stern, A.: Anyons and the quantum Hall effect – A pedagogical review. Ann. Phys. 323, 204–249 (2008). Available as arXiv:0711.4697

    Article  ADS  MATH  Google Scholar 

  103. Stone, M. (ed.): Quantum Hall Effect. World Scientific, Singapore (1992)

    MATH  Google Scholar 

  104. Szabo, M.E. (ed.): Collected Papers of Gerhard Gentzen. North–Holland, Amsterdam (1969)

    MATH  Google Scholar 

  105. Trimble, T.: Linear Logic, Bimodules, and Full Coherence for Autonomous Categories, Ph.D. thesis, Rutgers University (1994)

    Google Scholar 

  106. Troelstra, A.S.: Lectures on Linear Logic, Center for the Study of Language and Information. Stanford, California (1992)

    Google Scholar 

  107. Turaev, V.G.: Quantum Invariants of Knots and 3-Manifolds. de Gruyter, Berlin (1994)

    MATH  Google Scholar 

  108. van Tonder, A.: A lambda calculus for quantum computation. SIAM J. Comput. 33, 1109–1135 (2004). Also available as arXiv:quant-ph/0307150

    Article  MathSciNet  MATH  Google Scholar 

  109. Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121, 351–399 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  110. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)

    Article  ADS  Google Scholar 

  111. Yetter, D.N.: Functorial Knot Theory: Categories of Tangles, Coherence, Categorical Deformations, and Topological Invariants. World Scientific, Singapore (2001)

    MATH  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4