Reduce this Dataset’s data by applying min
along some dimension(s).
dim (str
, Iterable
of Hashable
, "..."
or None
, default: None
) – Name of dimension[s] along which to apply min
. For e.g. dim="x"
or dim=["x", "y"]
. If “…” or None, will reduce over all dimensions.
skipna (bool
or None
, optional) – If True, skip missing values (as marked by NaN). By default, only skips missing values for float dtypes; other dtypes either do not have a sentinel missing value (int) or skipna=True
has not been implemented (object, datetime64 or timedelta64).
keep_attrs (bool
or None
, optional) – If True, attrs
will be copied from the original object to the new one. If False, the new object will be returned without attributes.
**kwargs (Any
) – Additional keyword arguments passed on to the appropriate array function for calculating min
on this object’s data. These could include dask-specific kwargs like split_every
.
reduced (Dataset
) – New Dataset with min
applied to its data and the indicated dimension(s) removed
Examples
>>> da = xr.DataArray( ... np.array([1, 2, 3, 0, 2, np.nan]), ... dims="time", ... coords=dict( ... time=("time", pd.date_range("2001-01-01", freq="ME", periods=6)), ... labels=("time", np.array(["a", "b", "c", "c", "b", "a"])), ... ), ... ) >>> ds = xr.Dataset(dict(da=da)) >>> ds <xarray.Dataset> Size: 120B Dimensions: (time: 6) Coordinates: * time (time) datetime64[ns] 48B 2001-01-31 2001-02-28 ... 2001-06-30 labels (time) <U1 24B 'a' 'b' 'c' 'c' 'b' 'a' Data variables: da (time) float64 48B 1.0 2.0 3.0 0.0 2.0 nan
>>> ds.min() <xarray.Dataset> Size: 8B Dimensions: () Data variables: da float64 8B 0.0
Use skipna
to control whether NaNs are ignored.
>>> ds.min(skipna=False) <xarray.Dataset> Size: 8B Dimensions: () Data variables: da float64 8B nan
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4