A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://docs.snowflake.com/sql-reference/functions/sum below:

Website Navigation


SUM | Snowflake Documentation

Categories:

Aggregate functions (General) , Window function syntax and usage (General)

SUM

Returns the sum of non-NULL records for expr. You can use the DISTINCT keyword to compute the sum of unique non-null values. If all records inside a group are NULL, the function returns NULL.

See also:

COUNT , MAX , MIN

Syntax

Aggregate function

SUM( [ DISTINCT ] <expr1> )

Copy

Window function

SUM( [ DISTINCT ] <expr1> ) OVER (
                                 [ PARTITION BY <expr2> ]
                                 [ ORDER BY <expr3> [ ASC | DESC ] [ <window_frame> ] ]
                                 )

Copy

For detailed window_frame syntax, see Window function syntax and usage.

Arguments
expr1

This is an expression that evaluates to a numeric data type (INTEGER, FLOAT, DECIMAL, etc.).

expr2

This is the optional expression to partition by.

expr3

This is the optional expression to order by within each partition. (This does not control the order of the entire query output.)

Usage notes Examples
CREATE OR REPLACE TABLE sum_example(k INT, d DECIMAL(10,5),
                                    s1 VARCHAR(10), s2 VARCHAR(10));

INSERT INTO sum_example VALUES
  (1, 1.1, '1.1','one'),
  (1, 10, '10','ten'),
  (2, 2.2, '2.2','two'),
  (2, null, null,'null'),
  (3, null, null, 'null'),
  (null, 9, '9.9','nine');

SELECT * FROM sum_example;

Copy

+------+----------+------+------+
|    K |        D | S1   | S2   |
|------+----------+------+------|
|    1 |  1.10000 | 1.1  | one  |
|    1 | 10.00000 | 10.0 | ten  |
|    2 |  2.20000 | 2.2  | two  |
|    2 |     NULL | NULL | null |
|    3 |     NULL | NULL | null |
| NULL |  9.00000 | 9.9  | nine |
+------+----------+------+------+
SELECT SUM(d), SUM(s1) FROM sum_example;

Copy

+----------+---------+
|   SUM(D) | SUM(S1) |
|----------+---------|
| 22.30000 |    23.2 |
+----------+---------+
SELECT k, SUM(d), SUM(s1) FROM sum_example GROUP BY k;

Copy

+------+----------+---------+
|    K |   SUM(D) | SUM(S1) |
|------+----------+---------|
|    1 | 11.10000 |    11.1 |
|    2 |  2.20000 |     2.2 |
|    3 |     NULL |    NULL |
| NULL |  9.00000 |     9.9 |
+------+----------+---------+
SELECT SUM(s2) FROM sum_example;

Copy

100038 (22018): Numeric value 'one' is not recognized

The script below shows the use of this function (and some other aggregate window functions):

CREATE OR REPLACE TABLE example_cumulative (p INT, o INT, i INT);

INSERT INTO example_cumulative VALUES
    (  0, 1, 10), (0, 2, 20), (0, 3, 30),
    (100, 1, 10),(100, 2, 30),(100, 2, 5),(100, 3, 11),(100, 3, 120),
    (200, 1, 10000),(200, 1, 200),(200, 1, 808080),(200, 2, 33333),(200, 3, null), (200, 3, 4),
    (300, 1, null), (300, 1, null);

Copy

SELECT
    p, o, i,
    COUNT(i) OVER (PARTITION BY p ORDER BY o ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) count_i_Rows_Pre,
    SUM(i)   OVER (PARTITION BY p ORDER BY o ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) sum_i_Rows_Pre,
    AVG(i)   OVER (PARTITION BY p ORDER BY o ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) avg_i_Rows_Pre,
    MIN(i)   OVER (PARTITION BY p ORDER BY o ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) min_i_Rows_Pre,
    MAX(i)   OVER (PARTITION BY p ORDER BY o ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) max_i_Rows_Pre
  FROM example_cumulative
  ORDER BY p,o;
+-----+---+--------+------------------+----------------+----------------+----------------+----------------+
|   P | O |      I | COUNT_I_ROWS_PRE | SUM_I_ROWS_PRE | AVG_I_ROWS_PRE | MIN_I_ROWS_PRE | MAX_I_ROWS_PRE |
|-----+---+--------+------------------+----------------+----------------+----------------+----------------|
|   0 | 1 |     10 |                1 |             10 |         10.000 |             10 |             10 |
|   0 | 2 |     20 |                2 |             30 |         15.000 |             10 |             20 |
|   0 | 3 |     30 |                3 |             60 |         20.000 |             10 |             30 |
| 100 | 1 |     10 |                1 |             10 |         10.000 |             10 |             10 |
| 100 | 2 |     30 |                2 |             40 |         20.000 |             10 |             30 |
| 100 | 2 |      5 |                3 |             45 |         15.000 |              5 |             30 |
| 100 | 3 |     11 |                4 |             56 |         14.000 |              5 |             30 |
| 100 | 3 |    120 |                5 |            176 |         35.200 |              5 |            120 |
| 200 | 1 |  10000 |                1 |          10000 |      10000.000 |          10000 |          10000 |
| 200 | 1 |    200 |                2 |          10200 |       5100.000 |            200 |          10000 |
| 200 | 1 | 808080 |                3 |         818280 |     272760.000 |            200 |         808080 |
| 200 | 2 |  33333 |                4 |         851613 |     212903.250 |            200 |         808080 |
| 200 | 3 |   NULL |                4 |         851613 |     212903.250 |            200 |         808080 |
| 200 | 3 |      4 |                5 |         851617 |     170323.400 |              4 |         808080 |
| 300 | 1 |   NULL |                0 |           NULL |           NULL |           NULL |           NULL |
| 300 | 1 |   NULL |                0 |           NULL |           NULL |           NULL |           NULL |
+-----+---+--------+------------------+----------------+----------------+----------------+----------------+

Copy


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4