A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html below:

csr_matrix — SciPy v1.16.1 Manual

scipy.sparse.

csr_matrix#
class scipy.sparse.csr_matrix(arg1, shape=None, dtype=None, copy=False, *, maxprint=None)[source]#

Compressed Sparse Row matrix.

This can be instantiated in several ways:
csr_matrix(D)

where D is a 2-D ndarray

csr_matrix(S)

with another sparse array or matrix S (equivalent to S.tocsr())

csr_matrix((M, N), [dtype])

to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype=’d’.

csr_matrix((data, (row_ind, col_ind)), [shape=(M, N)])

where data, row_ind and col_ind satisfy the relationship a[row_ind[k], col_ind[k]] = data[k].

csr_matrix((data, indices, indptr), [shape=(M, N)])

is the standard CSR representation where the column indices for row i are stored in indices[indptr[i]:indptr[i+1]] and their corresponding values are stored in data[indptr[i]:indptr[i+1]]. If the shape parameter is not supplied, the matrix dimensions are inferred from the index arrays.

Attributes:
dtypedtype

Data type of the matrix

shape2-tuple

Shape of the matrix

ndimint

Number of dimensions (this is always 2)

nnz

Number of stored values, including explicit zeros.

size

Number of stored values.

data

CSR format data array of the matrix

indices

CSR format index array of the matrix

indptr

CSR format index pointer array of the matrix

has_sorted_indices

Whether the indices are sorted

has_canonical_format

Whether the array/matrix has sorted indices and no duplicates

T

Transpose.

Methods

Notes

Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power.

Advantages of the CSR format
  • efficient arithmetic operations CSR + CSR, CSR * CSR, etc.

  • efficient row slicing

  • fast matrix vector products

Disadvantages of the CSR format
  • slow column slicing operations (consider CSC)

  • changes to the sparsity structure are expensive (consider LIL or DOK)

Canonical Format
  • Within each row, indices are sorted by column.

  • There are no duplicate entries.

Examples

>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> csr_matrix((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 0]], dtype=int8)
>>> row = np.array([0, 0, 1, 2, 2, 2])
>>> col = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csr_matrix((data, (row, col)), shape=(3, 3)).toarray()
array([[1, 0, 2],
       [0, 0, 3],
       [4, 5, 6]])
>>> indptr = np.array([0, 2, 3, 6])
>>> indices = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csr_matrix((data, indices, indptr), shape=(3, 3)).toarray()
array([[1, 0, 2],
       [0, 0, 3],
       [4, 5, 6]])

Duplicate entries are summed together:

>>> row = np.array([0, 1, 2, 0])
>>> col = np.array([0, 1, 1, 0])
>>> data = np.array([1, 2, 4, 8])
>>> csr_matrix((data, (row, col)), shape=(3, 3)).toarray()
array([[9, 0, 0],
       [0, 2, 0],
       [0, 4, 0]])

As an example of how to construct a CSR matrix incrementally, the following snippet builds a term-document matrix from texts:

>>> docs = [["hello", "world", "hello"], ["goodbye", "cruel", "world"]]
>>> indptr = [0]
>>> indices = []
>>> data = []
>>> vocabulary = {}
>>> for d in docs:
...     for term in d:
...         index = vocabulary.setdefault(term, len(vocabulary))
...         indices.append(index)
...         data.append(1)
...     indptr.append(len(indices))
...
>>> csr_matrix((data, indices, indptr), dtype=int).toarray()
array([[2, 1, 0, 0],
       [0, 1, 1, 1]])

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4