scipy.sparse.
csr_matrix#Compressed Sparse Row matrix.
where D is a 2-D ndarray
with another sparse array or matrix S (equivalent to S.tocsr())
to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype=âdâ.
where data
, row_ind
and col_ind
satisfy the relationship a[row_ind[k], col_ind[k]] = data[k]
.
is the standard CSR representation where the column indices for row i are stored in indices[indptr[i]:indptr[i+1]]
and their corresponding values are stored in data[indptr[i]:indptr[i+1]]
. If the shape parameter is not supplied, the matrix dimensions are inferred from the index arrays.
Data type of the matrix
shape
2-tuple
Shape of the matrix
Number of dimensions (this is always 2)
nnz
Number of stored values, including explicit zeros.
size
Number of stored values.
CSR format data array of the matrix
CSR format index array of the matrix
CSR format index pointer array of the matrix
has_sorted_indices
Whether the indices are sorted
has_canonical_format
Whether the array/matrix has sorted indices and no duplicates
T
Transpose.
Methods
Notes
Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power.
efficient arithmetic operations CSR + CSR, CSR * CSR, etc.
efficient row slicing
fast matrix vector products
slow column slicing operations (consider CSC)
changes to the sparsity structure are expensive (consider LIL or DOK)
Within each row, indices are sorted by column.
There are no duplicate entries.
Examples
>>> import numpy as np >>> from scipy.sparse import csr_matrix >>> csr_matrix((3, 4), dtype=np.int8).toarray() array([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], dtype=int8)
>>> row = np.array([0, 0, 1, 2, 2, 2]) >>> col = np.array([0, 2, 2, 0, 1, 2]) >>> data = np.array([1, 2, 3, 4, 5, 6]) >>> csr_matrix((data, (row, col)), shape=(3, 3)).toarray() array([[1, 0, 2], [0, 0, 3], [4, 5, 6]])
>>> indptr = np.array([0, 2, 3, 6]) >>> indices = np.array([0, 2, 2, 0, 1, 2]) >>> data = np.array([1, 2, 3, 4, 5, 6]) >>> csr_matrix((data, indices, indptr), shape=(3, 3)).toarray() array([[1, 0, 2], [0, 0, 3], [4, 5, 6]])
Duplicate entries are summed together:
>>> row = np.array([0, 1, 2, 0]) >>> col = np.array([0, 1, 1, 0]) >>> data = np.array([1, 2, 4, 8]) >>> csr_matrix((data, (row, col)), shape=(3, 3)).toarray() array([[9, 0, 0], [0, 2, 0], [0, 4, 0]])
As an example of how to construct a CSR matrix incrementally, the following snippet builds a term-document matrix from texts:
>>> docs = [["hello", "world", "hello"], ["goodbye", "cruel", "world"]] >>> indptr = [0] >>> indices = [] >>> data = [] >>> vocabulary = {} >>> for d in docs: ... for term in d: ... index = vocabulary.setdefault(term, len(vocabulary)) ... indices.append(index) ... data.append(1) ... indptr.append(len(indices)) ... >>> csr_matrix((data, indices, indptr), dtype=int).toarray() array([[2, 1, 0, 0], [0, 1, 1, 1]])
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4