scipy.sparse.
csc_matrix#Compressed Sparse Column matrix.
where D is a 2-D ndarray
with another sparse array or matrix S (equivalent to S.tocsc())
to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype=âdâ.
where data
, row_ind
and col_ind
satisfy the relationship a[row_ind[k], col_ind[k]] = data[k]
.
is the standard CSC representation where the row indices for column i are stored in indices[indptr[i]:indptr[i+1]]
and their corresponding values are stored in data[indptr[i]:indptr[i+1]]
. If the shape parameter is not supplied, the matrix dimensions are inferred from the index arrays.
Data type of the matrix
shape
2-tuple
Shape of the matrix
Number of dimensions (this is always 2)
nnz
Number of stored values, including explicit zeros.
size
Number of stored values.
CSC format data array of the matrix
CSC format index array of the matrix
CSC format index pointer array of the matrix
has_sorted_indices
Whether the indices are sorted
has_canonical_format
Whether the array/matrix has sorted indices and no duplicates
T
Transpose.
Methods
Notes
Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power.
efficient arithmetic operations CSC + CSC, CSC * CSC, etc.
efficient column slicing
fast matrix vector products (CSR, BSR may be faster)
slow row slicing operations (consider CSR)
changes to the sparsity structure are expensive (consider LIL or DOK)
Within each column, indices are sorted by row.
There are no duplicate entries.
Examples
>>> import numpy as np >>> from scipy.sparse import csc_matrix >>> csc_matrix((3, 4), dtype=np.int8).toarray() array([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], dtype=int8)
>>> row = np.array([0, 2, 2, 0, 1, 2]) >>> col = np.array([0, 0, 1, 2, 2, 2]) >>> data = np.array([1, 2, 3, 4, 5, 6]) >>> csc_matrix((data, (row, col)), shape=(3, 3)).toarray() array([[1, 0, 4], [0, 0, 5], [2, 3, 6]])
>>> indptr = np.array([0, 2, 3, 6]) >>> indices = np.array([0, 2, 2, 0, 1, 2]) >>> data = np.array([1, 2, 3, 4, 5, 6]) >>> csc_matrix((data, indices, indptr), shape=(3, 3)).toarray() array([[1, 0, 4], [0, 0, 5], [2, 3, 6]])
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4