scipy.sparse.
coo_array#A sparse array in COOrdinate format.
Also known as the âijvâ or âtripletâ format.
where D is an ndarray
with another sparse array or matrix S (equivalent to S.tocoo())
to construct an empty sparse array with shape shape
dtype is optional, defaulting to dtype=âdâ.
data[:] the entries of the sparse array, in any order
coords[i][:] the axis-i coordinates of the data entries
Where A[coords] = data
, and coords is a tuple of index arrays. When shape is not specified, it is inferred from the index arrays.
Data type of the sparse array
Shape of the sparse array
Number of dimensions of the sparse array
nnz
Number of stored values, including explicit zeros.
size
Number of stored values.
COO format data array of the sparse array
COO format tuple of index arrays
Whether the matrix has sorted coordinates and no duplicates
format
Format string for matrix.
T
Transpose.
Methods
Notes
Sparse arrays can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power.
facilitates fast conversion among sparse formats
permits duplicate entries (see example)
very fast conversion to and from CSR/CSC formats
arithmetic operations
slicing
COO is a fast format for constructing sparse arrays
Once a COO array has been constructed, convert to CSR or CSC format for fast arithmetic and matrix vector operations
By default when converting to CSR or CSC format, duplicate (i,j) entries will be summed together. This facilitates efficient construction of finite element matrices and the like. (see example)
Entries and coordinates sorted by row, then column.
There are no duplicate entries (i.e. duplicate (i,j) locations)
Data arrays MAY have explicit zeros.
Examples
>>> # Constructing an empty sparse array >>> import numpy as np >>> from scipy.sparse import coo_array >>> coo_array((3, 4), dtype=np.int8).toarray() array([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], dtype=int8)
>>> # Constructing a sparse array using ijv format >>> row = np.array([0, 3, 1, 0]) >>> col = np.array([0, 3, 1, 2]) >>> data = np.array([4, 5, 7, 9]) >>> coo_array((data, (row, col)), shape=(4, 4)).toarray() array([[4, 0, 9, 0], [0, 7, 0, 0], [0, 0, 0, 0], [0, 0, 0, 5]])
>>> # Constructing a sparse array with duplicate coordinates >>> row = np.array([0, 0, 1, 3, 1, 0, 0]) >>> col = np.array([0, 2, 1, 3, 1, 0, 0]) >>> data = np.array([1, 1, 1, 1, 1, 1, 1]) >>> coo = coo_array((data, (row, col)), shape=(4, 4)) >>> # Duplicate coordinates are maintained until implicitly or explicitly summed >>> np.max(coo.data) 1 >>> coo.toarray() array([[3, 0, 1, 0], [0, 2, 0, 0], [0, 0, 0, 0], [0, 0, 0, 1]])
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4