scipy.cluster.vq.
vq#Assign codes from a code book to observations.
Assigns a code from a code book to each observation. Each observation vector in the âMâ by âNâ obs array is compared with the centroids in the code book and assigned the code of the closest centroid.
The features in obs should have unit variance, which can be achieved by passing them through the whiten function. The code book can be created with the k-means algorithm or a different encoding algorithm.
Each row of the âMâ x âNâ array is an observation. The columns are the âfeaturesâ seen during each observation. The features must be whitened first using the whiten function or something equivalent.
The code book is usually generated using the k-means algorithm. Each row of the array holds a different code, and the columns are the features of the code:
# f0 f1 f2 f3 code_book = [[ 1., 2., 3., 4.], #c0 [ 1., 2., 3., 4.], #c1 [ 1., 2., 3., 4.]] #c2
Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Default: True
A length M array holding the code book index for each observation.
The distortion (distance) between the observation and its nearest code.
Notes
vq
has experimental support for Python Array API Standard compatible backends in addition to NumPy. Please consider testing these features by setting an environment variable SCIPY_ARRAY_API=1
and providing CuPy, PyTorch, JAX, or Dask arrays as array arguments. The following combinations of backend and device (or other capability) are supported.
See Support for the array API standard for more information.
Examples
>>> import numpy as np >>> from scipy.cluster.vq import vq >>> code_book = np.array([[1., 1., 1.], ... [2., 2., 2.]]) >>> features = np.array([[1.9, 2.3, 1.7], ... [1.5, 2.5, 2.2], ... [0.8, 0.6, 1.7]]) >>> vq(features, code_book) (array([1, 1, 0], dtype=int32), array([0.43588989, 0.73484692, 0.83066239]))
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4