A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.matmul.html below:

numpy.matmul — NumPy v1.17 Manual

Matrix product of two arrays.

Parameters:
x1, x2 : array_like

Input arrays, scalars not allowed.

out : ndarray, optional

A location into which the result is stored. If provided, it must have a shape that matches the signature (n,k),(k,m)->(n,m). If not provided or None, a freshly-allocated array is returned.

**kwargs

For other keyword-only arguments, see the ufunc docs.

New in version 1.16: Now handles ufunc kwargs

Returns:
y : ndarray

The matrix product of the inputs. This is a scalar only when both x1, x2 are 1-d vectors.

Raises:
ValueError

If the last dimension of a is not the same size as the second-to-last dimension of b.

If a scalar value is passed in.

See also

vdot
Complex-conjugating dot product.
tensordot
Sum products over arbitrary axes.
einsum
Einstein summation convention.
dot
alternative matrix product with different broadcasting rules.

Notes

The behavior depends on the arguments in the following way.

matmul differs from dot in two important ways:

The matmul function implements the semantics of the @ operator introduced in Python 3.5 following PEP465.

Examples

For 2-D arrays it is the matrix product:

>>> a = np.array([[1, 0],
...               [0, 1]])
>>> b = np.array([[4, 1],
...               [2, 2]])
>>> np.matmul(a, b)
array([[4, 1],
       [2, 2]])

For 2-D mixed with 1-D, the result is the usual.

>>> a = np.array([[1, 0],
...               [0, 1]])
>>> b = np.array([1, 2])
>>> np.matmul(a, b)
array([1, 2])
>>> np.matmul(b, a)
array([1, 2])

Broadcasting is conventional for stacks of arrays

>>> a = np.arange(2 * 2 * 4).reshape((2, 2, 4))
>>> b = np.arange(2 * 2 * 4).reshape((2, 4, 2))
>>> np.matmul(a,b).shape
(2, 2, 2)
>>> np.matmul(a, b)[0, 1, 1]
98
>>> sum(a[0, 1, :] * b[0 , :, 1])
98

Vector, vector returns the scalar inner product, but neither argument is complex-conjugated:

>>> np.matmul([2j, 3j], [2j, 3j])
(-13+0j)

Scalar multiplication raises an error.

>>> np.matmul([1,2], 3)
Traceback (most recent call last):
...
ValueError: matmul: Input operand 1 does not have enough dimensions ...

New in version 1.10.0.


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4