numpy.random.
standard_gamma
(shape, size=None)¶
Draw samples from a standard Gamma distribution.
Samples are drawn from a Gamma distribution with specified parameters, shape (sometimes designated âkâ) and scale=1.
Parameters:Parameter, should be > 0.
Output shape. If the given shape is, e.g., (m, n, k)
, then m * n * k
samples are drawn. If size is None
(default), a single value is returned if shape
is a scalar. Otherwise, np.array(shape).size
samples are drawn.
Drawn samples from the parameterized standard gamma distribution.
See also
scipy.stats.gamma
Notes
The probability density for the Gamma distribution is
where is the shape and the scale, and is the Gamma function.
The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally in processes for which the waiting times between Poisson distributed events are relevant.
References
Examples
Draw samples from the distribution:
>>> shape, scale = 2., 1. # mean and width >>> s = np.random.standard_gamma(shape, 1000000)
Display the histogram of the samples, along with the probability density function:
>>> import matplotlib.pyplot as plt >>> import scipy.special as sps >>> count, bins, ignored = plt.hist(s, 50, density=True) >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/ \ ... (sps.gamma(shape) * scale**shape)) >>> plt.plot(bins, y, linewidth=2, color='r') >>> plt.show()
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4